Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon storage and its allocation of 7-, 29- and 32-year-old Erythrophleum fordii plantation ecosystems in Guangxi were studied on the basis of biomass survey. The results showed that the carbon contents in different organs of E. fordii, ranging from 509.0 to 572.4 g x kg(-1), were in the order of stem > branch > root > bark > leaf. No significant differences in carbon content were observed among the shrub, herb and litter layers of the E. fordii plantations with different ages. Carbon content in the soil layer (0-100 cm) decreased with increasing the soil depth, but increased with increasing the stand age. The carbon storage of the arbor layer was 21.8, 100.0 and 121.6 t x hm(-2) for 7-, 29- and 32-year-old stands, respectively, and the order of carbon storage allocation in different organs was same as the order of carbon content. The 7-, 29- and 32-year-old E. fordii plantation ecosystems stored carbon at 132.6, 220.2 and 242.6 t x hm(-2), respectively. The arbor layer and soil layer were the main carbon pools, accounting for more than 97% of carbon storage in the ecosystem. Carbon storage allocation increased in arbor layer but decreased in soil layer with increasing the stand age. The influence of stand age on carbon storage allocation in shrub, herb and litter layers did not show a obvious regular pattern.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!