Response to copper bromide exposure in Vicia sativa L. seeds: analysis of genotoxicity, nucleolar activity and mineral profile.

Ecotoxicol Environ Saf

Istituto di Biologia e Biotecnologia Agraria, CNR, Via Moruzzi 1, 56124 Pisa, Italy.

Published: September 2014

Copper bromide (CuBr2) effects on seed germination and plantlet development of Vicia sativa L. are evaluated through mitotic index, chromosome aberrations, nucleolar activity and mineral profile. CuBr2 induces a significant presence of micronuclei, sticky and c-metaphases, anaphase bridges and chromosome breaks. Increased number of nucleoli and scattering of AgNOR proteins from the nucleolus in the nuclear surface at CuBr2 1mM and in the cytoplasm at CuBr2 5mM, goes along with the decrease of root growth. In V. sativa embryo the content of many macro and micronutrients increases up to copper 1mM in agreement with reserve mobilization while at CuBr2 5mM some elements are present in lower amount. We hypothesize that inhibitory effects observed at 5mM are due either to a nutrient shortage or to a direct influence of copper on root cell division, evidenced by low mitotic index, high occurrence of chromosome aberrations and loss of material from the nucleolus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2014.06.014DOI Listing

Publication Analysis

Top Keywords

copper bromide
8
vicia sativa
8
nucleolar activity
8
activity mineral
8
mineral profile
8
chromosome aberrations
8
cubr2 5mm
8
cubr2
5
response copper
4
bromide exposure
4

Similar Publications

Bacterial plant diseases, worsened by biofilm-mediated resistance, are increasingly threatening global food security. Numerous attempts have been made to develop agrochemicals that inhibit biofilms, however, their ineffective foliar deposition and difficulty in removing mature biofilms remain major challenges. Herein, multifunctional three-component supramolecular nano-biscuits (NI6R@CB[7]@β-CD) are successfully engineered via ordered self-assembly between two macrocycles [cucurbit[7]uril (CB[7]), β-cyclodextrin (β-CD)] and (R)-2-naphthol-based bis-imidazolium bromide salt (NI6R).

View Article and Find Full Text PDF

This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.

View Article and Find Full Text PDF

Brochantite was precipitated using stoichiometric amounts of CuSO and NaOH and characterized by scanning electron microscopy, specific surface area, thermogravimetric analysis, and zeta potential. Brochantite can be converted into paratacamite, basic copper bromide, and copper phthalate by shaking the powder with solutions containing excess corresponding anions. By contrast, attempts to convert brochantite into basic iodide, acetate, nitrate, or rhodanide in a similar way failed, that is, the powder after shaking with solutions containing excess corresponding anions still showed the powder X-ray diffraction pattern of brochantite.

View Article and Find Full Text PDF

Novel Tripeptides as Tyrosinase Inhibitors: In Silico and In Vitro Approaches.

Int J Mol Sci

December 2024

Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.

Tyrosinase is a key enzyme responsible for the formation of melanin (a natural skin pigment with ultraviolet-protection properties). However, some people experience melanin overproduction, so new, safe, and biocompatible enzyme inhibitors are sought. New tripeptide tyrosinase inhibitors were developed using molecular modeling.

View Article and Find Full Text PDF

Initiator-Free Thiol-Aldehyde Photo Polycondensation.

Angew Chem Int Ed Engl

January 2025

Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China.

Traditional photopolymerizations generally require an initiator for initiating the polymerization while few cases have created degradable chemical bonds. Moreover, the migration instability and cytotoxicity of photo initiators are posing issues to human health and the environment. In this work, we discovered an initiator-free photo polycondensation system (IFPPC) between polymercaptans and aldehyde monomers, producing elastic and high strength plastic materials with exchangeable and degradable dithioacetal groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!