Procedure for the characterization of radon potential in existing dwellings and to assess the annual average indoor radon concentration.

J Environ Radioact

CSTB Health and Comfort Department, 24, rue Joseph Fourier, F-38400 Saint-Martin d'Hères, France.

Published: November 2014

Risk assessment due to radon exposure indoors is based on annual average indoor radon activity concentration. To assess the radon exposure in a building, measurement is generally performed during at least two months during heating period in order to be representative of the annual average value. This is because radon presence indoors could be very variable during time. This measurement protocol is fairly reliable but may be a limiting in the radon risk management, particularly during a real estate transaction due to the duration of the measurement and the limitation of the measurement period. A previous field study defined a rapid methodology to characterize radon entry in dwellings. The objective of this study was at first, to test this methodology in various dwellings to assess its relevance with a daily test. At second, a ventilation model was used to assess numerically the air renewal of a building, the indoor air quality all along the year and the annual average indoor radon activity concentration, based on local meteorological conditions, some building characteristics and in-situ characterization of indoor pollutant emission laws. Experimental results obtained on thirteen individual dwellings showed that it is generally possible to obtain a representative characterization of radon entry into homes. It was also possible to refine the methodology defined in the previous study. In addition, numerical assessments of annual average indoor radon activity concentration showed generally a good agreement with measured values. These results are encouraging to allow a procedure with a short measurement time to be used to characterize long-term radon potential in dwellings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2014.06.024DOI Listing

Publication Analysis

Top Keywords

annual average
20
average indoor
16
indoor radon
16
radon
12
radon activity
12
activity concentration
12
characterization radon
8
radon potential
8
dwellings assess
8
radon exposure
8

Similar Publications

Background: Chlamydia is common among women of reproductive age and can cause serious health issues. This study aimed to examine the trends and factors linked to newly diagnosed and reported chlamydia cases in women aged 15-49 in Guangdong Province from 2006 to 2020.

Methods: We included all newly diagnosed and reported chlamydia cases from January 1, 2006, to December 31, 2020.

View Article and Find Full Text PDF

This study presents an integrated framework that combines spatial clustering techniques and multi-source geospatial data to comprehensively assess and understand geological hazards in Hunan Province, China. The research integrates self-organizing map (SOM) and geo-self-organizing map (Geo-SOM) to explore the relationships between environmental factors and the occurrence of various geological hazards, including landslides, slope failures, collapses, ground subsidence, and debris flows. The key findings reveal that annual average precipitation (Pre), profile curvature (Pro_cur), and slope (Slo) are the primary factors influencing the composite geological hazard index (GI) across the province.

View Article and Find Full Text PDF

Soil erosion susceptibility maps and raster dataset for the hydrological basins of North Africa.

Sci Data

January 2025

University of Southern California, Viterbi School of Engineering, 3737 Watt Way, Powell Hall of Engineering, Los Angeles, CA, 90089, USA.

Soil erosion in North Africa modulates agricultural and urban developments as well as the impacts of flash floods. Existing investigations and associated datasets are mainly performed in localized urban areas, often representing a limited part of a watershed. The above compromises the implementation of mitigation measures for this vast area under accentuating extremes and continuous hydroclimatic fluctuations.

View Article and Find Full Text PDF

RADON in a high karst area of Montenegro - A case study.

Appl Radiat Isot

January 2025

School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia.

The national radon surveys in Montenegro revealed that the highest annual average radon concentrations (C) in ground floors of dwellings and schools were found in a rural region characterized as a typical high-karst area. In this region, spanning approximately 800 km, C values in 9 houses and 16 schools ranged from 219 to 2494 Bq/m, with AM = 977 Bq/m. To investigate the causes of these elevated indoor radon concentrations, the following parameters were measured near the 25 surveyed buildings: soil humidity, electrical conductivity, pH, activity concentrations of Ra, U, U, Th and K, radon concentration in soil gas (c), soil permeability for radon gas (k), and gamma dose rate in the air.

View Article and Find Full Text PDF

Bone mineral density (BMD), an important marker of bone health, is regulated by a complex interaction of proteins. Plasma proteomic analyses can contribute to identification of proteins associated with changes in BMD. This may be especially informative in stages of bone accrual and peak BMD achievement (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!