Pioglitazone treatment reduces adipose tissue inflammation through reduction of mast cell and macrophage number and by improving vascularity.

PLoS One

The Department of Medicine, Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, United States of America.

Published: November 2015

Context And Objective: Adipose tissue in insulin resistant subjects contains inflammatory cells and extracellular matrix components. This study examined adipose pathology of insulin resistant subjects who were treated with pioglitazone or fish oil.

Design, Setting And Participants: Adipose biopsies were examined from nine insulin resistant subjects before/after treatment with pioglitazone 45 mg/day for 12 weeks and also from 19 subjects who were treated with fish oil (1,860 mg EPA, 1,500 mg DHA daily). These studies were performed in a clinical research center setting.

Results: Pioglitazone treatment increased the cross-sectional area of adipocytes by 18% (p = 0.01), and also increased capillary density without affecting larger vessels. Pioglitazone treatment decreased total adipose macrophage number by 26%, with a 56% decrease in M1 macrophages and an increase in M2 macrophages. Mast cells were more abundant in obese versus lean subjects, and were decreased from 24 to 13 cells/mm(2) (p = 0.02) in patients treated with pioglitazone, but not in subjects treated with FO. Although there were no changes in total collagen protein, pioglitazone increased the amount of elastin protein in adipose by 6-fold.

Conclusion: The PPARγ agonist pioglitazone increased adipocyte size yet improved other features of adipose, increasing capillary number and reducing mast cells and inflammatory macrophages. The increase in elastin may better permit adipocyte expansion without triggering cell necrosis and an inflammatory reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092104PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102190PLOS

Publication Analysis

Top Keywords

pioglitazone treatment
12
insulin resistant
12
resistant subjects
12
subjects treated
12
pioglitazone
8
adipose tissue
8
macrophage number
8
treated pioglitazone
8
macrophages increase
8
mast cells
8

Similar Publications

Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.

View Article and Find Full Text PDF

Glucose metabolism impairment in major depressive disorder.

Brain Res Bull

January 2025

First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China. Electronic address:

Major depressive disorder (MDD) is a common mental disorder with chronic tendencies that seriously affect regular work, life, and study. However, its exact pathogenesis remains unclear. Patients with MDD experience systemic and localized impairments in glucose metabolism throughout the disease course, disrupting various processes such as glucose uptake, glycoprotein transport, glycolysis, the tricarboxylic acid cycle (TCA), and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Oral administration of pioglitazone inhibits pulmonary hypertension by regulating the gut microbiome and plasma metabolome in male rats.

Physiol Rep

January 2025

Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China.

The oral administrated thiazolidinediones (TZDs) have been widely reported to alleviate experimental pulmonary hypertension (PH). However, previous studies mainly focused on their beneficial effects on the cardiopulmonary vascular system but failed to determine their potential roles on gut microenvironment. This study aims to investigate the effects of pioglitazone, an oral TZD drug, on gut microbiome in classic PH rat models induced by hypoxia (HPH) or SU5416/hypoxia (SuHx-PH) and evaluate the therapeutic potential of supplementation of selective probiotics for experimental PH.

View Article and Find Full Text PDF

Clostridioides difficile is the leading cause of healthcare- and antibiotic-associated diarrhea. Surface layer protein A (SlpA), an essential component of the bacterium's outermost layer, contributes to colonization and inflammation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) has been demonstrated to improve intestinal integrity and prevent inflammation in host cells.

View Article and Find Full Text PDF

This study aimed to investigate whether activation of PPARγ regulates M1/M2 macrophage polarization to attenuate dextran sulfate sodium salt (DSS)-induced inflammatory bowel disease (IBD) via the STAT-1/STAT-6 pathway in vivo and in vitro. We first examined the effect of PPARγ on macrophage polarization in LPS/IFN-γ-treated M1 RAW264.7 cells and IL-4/IL-13-treated M2 RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!