A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Peroxiredoxin post-translational modifications by redox messengers. | LitMetric

Peroxiredoxin post-translational modifications by redox messengers.

Redox Biol

Institut de Chimie des Substances Naturelles, UPR2301 CNRS, 91190 Gif-sur-yvette, France.

Published: January 2015

Peroxiredoxins (Prxs) are a family of thiol peroxidases that participate in hydroperoxide detoxification and regulates H2O2 signaling. In mammals, the four typical 2-Cys Prxs (Prxs 1, 2, 3 and 4) are known to regulate H2O2-mediated intracellular signaling. The 2 catalytic cysteines of 2-Cys Prxs, the so-called peroxidatic and resolving cysteines, are regulatory switches that are prone to react with redox signaling molecules. We investigated the respective modifications induced by H2O2, NO and H2S in the murine macrophage cell line RAW264.7 by mass spectrometry and immunoblotting after separating 2-Cys Prxs by one-dimensional or two-dimensional PAGE. We found that H2S, unlike NO, does not prevent H2O2-mediated sulfinylation of 2-Cys Prxs and that Prx2 is more sensitive to NO-mediated protection against sulfinylation by peroxides. We also observed that cells exposed to exogenous NO, released by Cys-SNO or DETA-NO, or producing NO upon stimulation by IFN-γ and LPS, present an acidic form of Prx1 whose modification is consistent with S-homocysteinylation of its peroxidatic cysteine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085344PMC
http://dx.doi.org/10.1016/j.redox.2014.06.001DOI Listing

Publication Analysis

Top Keywords

2-cys prxs
16
prxs
6
peroxiredoxin post-translational
4
post-translational modifications
4
modifications redox
4
redox messengers
4
messengers peroxiredoxins
4
peroxiredoxins prxs
4
prxs family
4
family thiol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!