The present study aimed to evaluate the effect of pomegranate juice (PJ) on oxidative stress (OS) and sperm concentration in a rat model of testicular torsion-detorsion. A total of 21 Wistar albino rats were randomly divided into three groups, each consisting of seven rats, as follows: i) control group, which underwent sham surgery; ii) ischemia/reperfusion (I/R) group, designed to determine the effects of the testicular torsion-detorsion process on rats; and iii) PJ+I/R group, designed to evaluate the effect of PJ on the OS and sperm cell concentrations induced by the torsion-detorsion process. In the PJ+I/R group, the rats were given 0.4 ml/day PJ orally over a period of eight weeks prior to surgery. Ipsilateral orchiectomy was carried out and 5-cm blood samples were obtained from the inferior vena cava of all rats. Biochemical analyses were performed to calculate the superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in the testicular tissue and serum. The concentrations of spermatids, spermatocytes and spermatogonia in the seminiferous tubules were assessed using histopathological methods. Serum and tissue SOD and MDA levels were significantly higher in rats from the I/R group compared with the control group (P<0.001). PJ treatment significantly decreased the SOD and MDA levels in both the serum and testicular tissue of the rats (P<0.001). The spermatid, spermatocyte and spermatogonia concentrations were significantly reduced in the I/R group compared with the control group (P<0.001). PJ treatment significantly improved the concentrations of spermatids, spermatocytes and spermatogonia compared with those in the I/R group (P=0.008). The experimentally established testicular torsion-detorsion model led to OS in the rat testes. Daily consumption of PJ prior to surgery reduced OS parameters and improved sperm cell concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079419 | PMC |
http://dx.doi.org/10.3892/etm.2014.1782 | DOI Listing |
Rev Int Androl
December 2024
Department of Sports Science, College of Education, Zhejiang University, 310058 Hangzhou, Zhejiang, China.
Background: Testicular torsion-detorsion damage is a common ischemia-reperfusion injury brought on by an excess of reactive oxygen species. Reactive oxygen species may affect cellular differentiation by regulating gene expression. The gene expression in the testis is essential for spermatogenesis.
View Article and Find Full Text PDFUlus Travma Acil Cerrahi Derg
October 2024
Department of Urology, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat-Türkiye.
Sci Rep
October 2024
Department of Sports Science, College of Education, Zhejiang University, Hangzhou City, 310058, Zhejiang Province, China.
Testicular ischemia-reperfusion induces enhanced concentration of reactive oxygen species. The increased reactive oxygen species harm cellular lipids, nucleic acids, proteins, and carbohydrates, and ultimately cause testicular injury. Sulforaphane, a kind of natural dietary isothiocyanate, exists predominantly in some cruciferous vegetables, like broccoli and cabbage.
View Article and Find Full Text PDFAndrology
September 2024
Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: Testicular torsion/detorsion can cause testis loss and infertility. Aloperine is a major active alkaloid extracted from Sophora alopecuroides Linn. It has been shown to have organ-protective effects.
View Article and Find Full Text PDFSci Rep
August 2024
Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!