Although a large number of microRNAs (miRNAs) have been identified in different plant species, the functional roles and targets of the majority of miRNAs have not yet been determined. Here, Arabidopsis thaliana miRNA400 (miR400) was investigated for its functional role in the defense response to diverse pathogens. Transgenic Arabidopsis plants that overexpress MIR400 (35S::MIR400) displayed much more severe disease symptoms than the wild-type plants when infected with the bacterium Pseudomonas syringae pv. tomato DC3000 or the fungus Botrytis cinerea. MiR400 guided the cleavage of two genes (At1g06580 and At1g62720) encoding pentatricopeptide repeat (PPR) proteins. To confirm further that the miR400-mediated defense response was due to the cleavage of PPR mRNAs, loss-of-function mutant and artificial miRNA-mediated knockdown mutants of PPR were generated, and their disease responses were analyzed upon pathogen challenge. Similar to the 35S::MIR400 plants, the ppr mutants displayed much more severe disease symptoms than the wild-type plants when challenged with the pathogens, indicating that miR400 affects the defense response by cleaving PPR mRNAs. Expression of miR400 was down-regulated, whereas the PPR1 and PPR2 transcripts increased upon pathogen challenge. Collectively, the present study reveals that miR400-mediated dysfunction of PPR proteins renders Arabidopsis more susceptible to pathogenic bacteria and fungi, which emphasizes the importance of PPR proteins in plant defense against diverse pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcu096 | DOI Listing |
Front Immunol
January 2025
Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland.
Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Science and Technology Department, University College in Nairiyah, University of Hafr Al Batin (UHB), 31991 Nairiyah, Saudi Arabia.
Salinity is one of the abiotic stress factors that affect plant physiology and cause various plant disorders. Thiourea, which consists of amino, thiol, and imino groups, is an antioxidant and growth regulator. The objective was to determine the antioxidant role of thiourea (0, 3, 6 mM) in attenuating the effects of salinity (0 mM, 50 mM, 100 mM NaCl) on growth, yield, and some biochemical compositions of flax ( L.
View Article and Find Full Text PDFCurr Opin Insect Sci
December 2024
Department of Entomology, Texas A&M University, College Station, TX, USA. Electronic address:
Plants and invertebrates use chemical signals and cues to construct information about their environment. It is well reviewed that chemical signals play key roles in interactions between conspecific insects, such as sex pheromones for finding mates, and that plants transmit chemical signals to recruit natural enemies that kill herbivores. However, it is also known that chemicals emitted by natural enemies can influence insect herbivore physiology and behavior.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India. Electronic address:
Septins are evolutionarily conserved GTP-binding proteins mediating innate immunity, autophagy and inflammation in higher animals; however, they are yet to be fully characterized in fish. The study encompasses cloning of complete septin 2 cDNA from the rohu carp (Labeo rohita) that consisted of an open reading frame of 1050 bp and phylogenetic amino acid similarity of 99.43 % to cyprinid Onychostoma macrolepis.
View Article and Find Full Text PDFVirology
December 2024
Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!