A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoshuttles propelled by motor proteins sequentially assemble molecular cargo in a microfluidic device. | LitMetric

Nanoshuttles propelled by motor proteins sequentially assemble molecular cargo in a microfluidic device.

Lab Chip

Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland.

Published: October 2014

Nanoshuttles powered by the molecular motor kinesin have the potential to capture and concentrate rare molecules from solution as well as to transport, sort and assemble them in a high-throughput manner. One long-thought-of goal has been the realisation of a molecular assembly line with nanoshuttles as workhorses. To harness them for this purpose might allow the community to engineer novel materials and nanodevices. The central milestone towards this goal is to expose nanoshuttles to a series of different molecules or building blocks and load them sequentially to build hierarchical structures, macromolecules or materials. Here, we addressed this challenge by exploiting the synergy of two so far mostly complementary techniques, nanoshuttle-mediated active transport and pressure-driven passive transport, integrated into a single microfluidic device to demonstrate the realisation of a molecular assembly line. Multiple step protocols can thus be miniaturised to a highly parallelised and autonomous working lab-on-a-chip: in each reaction chamber, analytes or building blocks are captured from solution and are then transported by nanoshuttles across fluid flow boundaries in the next chamber. Cargo can thus be assembled, modified, analysed and eventually unloaded in a procedure that requires only one step by its operator.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4lc00385cDOI Listing

Publication Analysis

Top Keywords

microfluidic device
8
realisation molecular
8
molecular assembly
8
building blocks
8
nanoshuttles
5
nanoshuttles propelled
4
propelled motor
4
motor proteins
4
proteins sequentially
4
sequentially assemble
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!