A DNA minor groove binder shows high effectiveness as a quencher for FRET probes.

Bioorg Med Chem Lett

First Affiliated Hospital, School of Medicine, ZheJiang University, Qingchun Road 79, Hangzhou 310003, China. Electronic address:

Published: August 2014

AI Article Synopsis

  • A new non-fluorescent quencher using thiazole orange was added to oligonucleotides to enhance their performance in experiments.
  • It was shown to effectively work with fluorescein amidite dyes in fluorimetry and real-time polymerase chain reaction (PCR) tests.
  • The thiazole orange quencher improves the stability of DNA duplexes, which can help create shorter and more precise probes, and it was also effective in TaqMan probes.

Article Abstract

A non-fluorescent quencher based on thiazole orange was incorporated into oligonucleotides. Fluorimetry and fluorogenic real-time polymerase chain reaction experiments demonstrated that the quencher is effective for fluorescein amidite dyes. The thiazole orange quencher also increased the melting temperature of DNA duplexes, which may facilitate the design of shorter and more discriminatory probes. The effectiveness of the quencher in TaqMan probes was also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2014.06.036DOI Listing

Publication Analysis

Top Keywords

effectiveness quencher
8
thiazole orange
8
quencher
5
dna minor
4
minor groove
4
groove binder
4
binder high
4
high effectiveness
4
quencher fret
4
fret probes
4

Similar Publications

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Invasive meningococcal disease, caused by (), is a critical global health issue, necessitating swift and precise diagnostics for effective management and control. Here, we introduce a novel diagnostic assay, NM-RT-MCDA, that combines multiple cross displacement amplification (MCDA) with real-time fluorescence detection, targeting a specific gene region in the genome. The assay utilizes a primer set designed for high specificity and incorporates a fluorophore-quencher pair with a restriction endonuclease site for real-time monitoring.

View Article and Find Full Text PDF

According to the fluorescence internal filtering effect (IFE), the more the absorption spectrum of the quencher overlaps with the excitation and emission spectra of the fluorescent substance, the better the quenching effect and, correspondingly, the more significant and sensitive the contrast becomes when the fluorescence is turned on. Thus, in the competitive fluorescence-quenching lateral flow immunoassays (FQ-LFIAs), the fluorescence quencher with an outstanding optical property is of great importance. Herein, gold nanoparticles (AuNPs) and polydopamine (PDA) coengineered covalent organic frameworks (COF/Au@PDA) were synthesized as a fluorescence quencher to increase spectral overlap.

View Article and Find Full Text PDF

Synthetic opioids, especially fentanyl and its analogs, have created an epidemic of abuse and significantly increased overdose deaths in the United States. Current detection methods have drawbacks in their sensitivity, scalability, and portability that limit field-based application to promote public health and safety. The need to detect trace amounts of fentanyl in complex mixtures with other drugs or interferents, and the continued emergence of new fentanyl analogs, further complicates detection.

View Article and Find Full Text PDF

Sol-gel silica matrices singly doped with Sm and co-doped with ligands phenyl phosphinic acid (PPIA) and trioctylphosphine oxide (TOPO) were fabricated and studied for their structural and spectroscopic behaviour. Structural studies were done by x-ray diffraction (XRD) and Fourier transform infra-red (FTIR) absorption analysis whereas spectroscopic behaviour was studied by ultraviolet - visible (UV-Vis) absorption, photoluminescence (PL) excitation, emission and time-correlated decay analyses. XRD studies exhibit the amorphous nature of the samples and FTIR studies corroborate the presence of the ligands in the silica matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!