Radiation-induced lung injury is a kind of sterile inflammation, which may lead to morbidity and mortality. The mechanism by which ionizing radiation activate the immune system is not well understood. In the present study, we have investigated the immunological responses induced by local irradiation-induced damage in mouse lung. The left lungs of C57BL/6 mice were irradiated at a high dose of 100 Gy. The histology of the lungs and spleen showed evidences of alveolar inflammation and congestion at 2 weeks after X-ray treatment. Also, prominent increase in cells expressing the cell surface markers, Gr(+)CD11b(+)F4/80(+) and Ly6C(+) Ly6G(+) were observed 2 weeks after X-ray treatment (100 Gy). Gr1(+)CD11b(+)F4/80(+) cell depletion by clodronate treatment reversed the histological effects and also failed to recruit Gr(+)CD11b(+) cells or F4/80(+) cells caused by irradiation. The origin of recruited Gr1(+)CD11b(+) cells was found to be a mixed resident and recruited phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-014-9952-8DOI Listing

Publication Analysis

Top Keywords

weeks x-ray
8
x-ray treatment
8
recruitment gr1+cd11b
4
gr1+cd11b +f4/80
4
+f4/80 population
4
population bone
4
bone marrow
4
marrow spleen
4
spleen irradiation-induced
4
irradiation-induced pulmonary
4

Similar Publications

Placenta percreta is a rare form of disorder found in the spectrum of placenta accreta and represents a considerable cause of maternal complications with an increase in mortality. The radiologist's role is essential due to the support of images acquired by magnetic resonance imaging, given their high sensitivity and specificity to predict the degree of placental invasion in substitution or accompaniment of the ultrasound study between 28 and 32 weeks of gestation. We present the case of a 29-year-old patient who was in her third pregnancy with a history of two cesarean sections at the ISSSTE Regional Hospital in Monterrey, Nuevo León.

View Article and Find Full Text PDF

Effect of curcumin-loaded polycaprolactone scaffold on Achilles tendon repair in rats.

Vet Res Forum

November 2024

Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.

View Article and Find Full Text PDF

Purpose: Obesity and type 2 diabetes (T2DM) are major risk factors for hepatic steatosis. Diet or bariatric surgery can reduce liver volume, fat content, and inflammation. However, little is known about their effects on liver function, as evaluated here using the LiMAx test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!