The authors present a prospective randomized blinded cadaver study designed to evaluate the engineering concept of a squeeze film effect and the effect of cement viscosity on cement penetration in total knee arthroplasty. This was done in response to an earlier clinical study demonstrating inferior tibial cement penetration using early, often liquid, phase cement. Paired cadaver tibias were implanted with the tibial component using either liquid or dough phase cement. Based on an AP fluoroscopic image, the dough phase cement penetrated deeper than liquid in all four zones. This was statistically significant in zones 1, 2 and 3. Deeper cement penetration has been shown to provide a stronger cement-bone interphase. As a result dough phase cement is recommended to obtain optimal cement penetration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2014.05.010DOI Listing

Publication Analysis

Top Keywords

cement penetration
20
phase cement
16
dough phase
12
cement
9
viscosity cement
8
penetration total
8
total knee
8
knee arthroplasty
8
squeeze film
8
penetration
5

Similar Publications

Purpose: This study was aimed to compare the difference between iRoot SP and AH Plus on root canal sealing ability for teeth extracted due to severe periodontitis and explore whether the dentin tubule pathway plays an important role in the development of endodontic-periodontic lesions(EPL), in order to provide a theoretical basis for selection of proper time for root canal therapy and suitable root canal sealants in patients with EPL.

Methods: Fifty single-root anterior teeth extracted due to severe periodontitis were selected. The roots were completely debrided to remove the calculus, dental plaque and cementum.

View Article and Find Full Text PDF

Assessing correlation between different temporary restorative materials for microleakage following endodontic treatment: an in-vitro study.

BMC Oral Health

December 2024

Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.

Background: Coronal microleakage, the passage of fluids and bacteria through the interface between the temporary restoration and the tooth structure, can potentially result in endodontic treatment failure.

Purpose: This study evaluated and compared the sealing efficacy of various temporary restorative materials utilized during endodontic procedures.

Methods: All seventy premolar teeth were extracted, measured, and restored, except for the negative control group, where the teeth were left whole.

View Article and Find Full Text PDF

This study investigated the effects of nonthermal atmospheric pressure plasma (NAPP) application and dentin rehydration with water (REHY) on bond strength (BS) of adhesives. Three etch-and-rinse adhesives were tested: Scotchbond Multi-Purpose (SBM / water-based primer + adhesive resin), Gluma Bond Universal (GBU / single-bottle containing acetone as organic solvent) and Prime&Bond Universal (PBU / single-bottle containing propanol as organic solvent). Adhesives were applied: 1- to phosphoric acid-etched dentin (Control), 2- after NAPP application for 45 seconds to etched dentin or 3- after REHY with water (10 seconds) of plasma-treated etched dentin.

View Article and Find Full Text PDF

Analysis of the Influence of Different Diameters of De Laval Supersonic Nozzles on the Key Splashing Parameters of Remaining Slag.

Materials (Basel)

November 2024

Department of Machine Parts and Mechanism, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská Str. 2, 46117 Liberec, Czech Republic.

The paper is devoted to the analysis of a supersonic nozzle system effect in gas-cooled lances on the technological parameters of slag splashing in an oxygen converter. Simulation calculations were carried out, taking into account the parameters of nozzles used in the technological lines of converter steel plants in Ukraine and Brazil. The problems were solved in several stages.

View Article and Find Full Text PDF

In this study, the protective effect of a Nanoscale Deep Penetration Sealer (NDPS) in improving the chloride erosion resistance of concrete was evaluated and the influence of water-cement ratio (/) and the NDPS spray volume on the protective effect was explored, in order to gain a deeper insight into the effect of NDPS on the durability of concrete in chloride environments. The thickness of the protective layer formed by NDPS within the concrete was determined and the effectiveness of this protective layer was verified. Based on the determination of the ability of NDPS to form a protective layer in concrete, the diffusion laws of chloride in concrete at different / and NDPS spray volumes were investigated, and a prediction model was established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!