Inspirable nano-particles into lungs in the atmosphere were studied in this paper. Field emission scanning electron microscope (FSEM) and X-ray energy dispersive spectrometer were used to investigate the morphology and major constituents of inspirable nano-particles into lungs systematically. The results showed that most of the inspirable nano-particles in the atmosphere are spherical and ellipsoidal, with smooth surface and dense structure. The smaller nano-particles are clustered into loose floccule, with the sizes in the range of 30 to 100 nm. The constant elements in the nano-particles are close consistent with the large particle pollutants, which mainly contain C, O, Al, Si, Na, Mg, K, Ca, Fe, S and Cl etc. The point Analysis of EDS confirmed that the element content of Cl and S in some nano-particles is significantly increased, while others mainly contain C and O. It is believed that the surface of nano inorganic dust particles was adsorbed by the organic pollutants to form the core-shell structure nano-particles pollutants in the process of aerosol formation. Thus, reducing anthropogenic emissions of organic pollutants has great influence on the formation of inspirable nano-particles.

Download full-text PDF

Source

Publication Analysis

Top Keywords

inspirable nano-particles
20
nano-particles lungs
12
nano-particles
9
organic pollutants
8
inspirable
5
[microanalysis study
4
study inspirable
4
lungs sem
4
sem xreds]
4
xreds] inspirable
4

Similar Publications

Inspirable nano-particles into lungs in the atmosphere were studied in this paper. Field emission scanning electron microscope (FSEM) and X-ray energy dispersive spectrometer were used to investigate the morphology and major constituents of inspirable nano-particles into lungs systematically. The results showed that most of the inspirable nano-particles in the atmosphere are spherical and ellipsoidal, with smooth surface and dense structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!