UV-Vis absorption spectra and electrochemical properties of 5-(o-hydroxyphenyl)-10, 15, 20-tri-(p-phenyl)porphyrin (TPPOH) and 5-(o-hydroxyphenyl)-10, 15, 20-tri-(p-methoxyphenyl) porphyrin [(p-OCH3)TPPOH] with different electron groups were investigated by experiments and density functional theory (DFT). Due to the introduction of para-methoxyl group (-OCH3), obvious red shift of 3 nm in the maximum absorbance of the UV-Vis spectra, negative shift in redox potential of (p-OCH3)TPPOH, and the decrease (0.06 eV) in the energy gap (DE) of the frontier highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (of (p-OCH3)TPPOH occurred as compared to those of TPPOH. The results are due to that electron donating groups of -OCH3 increase the electron density of porphyrin ring in (p-OCH3)TPPOH. Electron distributions of the frontier orbital calculated by DFT showed that the increase in the energy levels of HOMO and LUMO, while the decrease of 0.05 eV in the energy gap. The agreement between experimental result and theoretical value and the further illustration of the mechanism for the spectral change and electrochemical properties provide important bases for the design and application of the porphyrin derivatives with different electron groups.

Download full-text PDF

Source

Publication Analysis

Top Keywords

electron groups
12
electrochemical properties
8
energy gap
8
molecular orbital
8
electron
5
[porphyrins electron
4
groups
4
groups spectral
4
spectral dft
4
dft study]
4

Similar Publications

Background Toothbrush manufacturers commonly use bristle materials such as nylon, polybutylene terephthalate, polypropylene, polyethylene terephthalate, boar hair, bamboo, carbon fiber, silicone, polylactic acid, or their modifications such as Curen. Nylon filaments have long been demonstrated to be durable and are widely used, but not much is known regarding the performance of Curen filaments compared to nylon filaments. This in vitro study compared the stiffness, abrasion potential, abrasion resistance, and bristle surface changes of Curen and nylon filaments.

View Article and Find Full Text PDF

is an alga with high fucoxanthin, phlorotannin, fucoidan, sterol, and astaxanthin. The silver nanoparticles of (AgNPs-Fv) are expected to have high antioxidant, anti-collagenase, and antibacterial activities. The aim of this study was to characterize the distribution and size of AgNPs-Fv and determine their antioxidant, anti-collagenase, and antibacterial activities.

View Article and Find Full Text PDF

Placenta tissue has biological advantages, including anti-inflammatory, anti-bacterial, anti-fibrotic formation, and immunomodulatory properties. The amnion membrane (AM) is an inner side membrane of the placenta that faces the fetus. The main sources of amnion are humans and animals, with bovine being one of the significant sources.

View Article and Find Full Text PDF

Background: Development of novel chiral antifungal agents for effective control of plant pathogens is urgently needed. In this study, a series of pyrazol-5-yl-benzamide derivatives containing chiral oxazoline moiety were rationally designed and developed based on molecular docking.

Results: The in vitro antifungal assay results indicated that compounds (rac)-4h (R = Et), (S)-4 h (R = S-Et) and (R)-4 h (R = R-Et) exhibited remarkable antifungal activities against Valsa mali with median effective concentration (EC) values of 0.

View Article and Find Full Text PDF

Light-induced electron spin qubit coherences in the purple bacteria reaction center protein.

Phys Chem Chem Phys

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.

Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!