The present paper describes the design of pellicle-milk double-layer phantom experiment. Milk solution of 40 different concentrations represents internal information of tissue, 1 to 5 pellicle which covers above the milk solution represents interference information of superficial tissue. The experiment collected 200 scattering spectral data of two positions and took the one single position spectral group as control, and then respectively predicted the milk solution concentration on bottom layer with the ratio of 3:1 through the BP neural network method. The experimental results show that single position scattering spectrum and two-position scattering spectrum both reached more than 90% training fitting rates and prediction accuracy, and the prediction accuracy of two-position scattering spectra is higher, reaching 98.41%. It was verified by the experimental results that scattering spectrum based on photon dissemination path can efficiently predict the milk solution concentration and eliminate the influence of superficial tissue for measurement of internal organization, and considering multi-position in modeling process can improve the accuracy of the prediction. This study validates the feasibility of the method for exploring internal information of tissue without damaging tissue integrity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

milk solution
16
scattering spectrum
12
internal tissue
8
superficial tissue
8
single position
8
solution concentration
8
two-position scattering
8
prediction accuracy
8
accuracy prediction
8
tissue
6

Similar Publications

Sepsis in Preterm Neonates Caused by Central Venous Catheter: A Case Report.

Pediatr Dev Pathol

January 2025

Department of Neonatology, Obstetrics & Gynecology Hospital of Fudan University, Yangtze River Delta Integration Demonstration Zone (Qingpu), Shanghai, China.

In recent years, infection has emerged as a main concern in the field of children's public health. This bacterium, known to be a pollutant, can be found in various settings such as hospital wards, equipment, breast milk, nutrient solution, and so on. With its high pathogenicity and toxicity, infection can lead to severe and life-threatening symptoms, particularly in premature infants.

View Article and Find Full Text PDF

Magnetic Field-Accelerated Nonthermal Plasma Digestion for Field Pretreatment and Determination of Heavy Metals in Biological Samples.

Anal Chem

January 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

Field analysis of heavy metals in biological samples is essential for assessing their potential threats to human health. The development of portable pretreatment and detection devices is crucial to address this challenge. Herein, a magnetic field-accelerated nonthermal plasma digestion device using dielectric barrier discharge (DBD) is designed for the rapid and environmentally friendly pretreatment of biological samples and subsequently combined with point discharge-optical emission spectrometry (PD-OES) for sensitive determination of heavy metals.

View Article and Find Full Text PDF

Objective: To characterize food group consumption, assess the contribution of food groups to energy and micronutrient intake, and estimate usual nutrient intake among adults in rural Sri Lanka.

Design: A baseline survey (Dec 2020-Feb 2021) was conducted as part of an agriculture-based, nutrition-sensitive resilience program evaluation. Dietary intake was assessed using telephone-based 24-hour recalls (n=1283), with repeat recalls from 769 participants.

View Article and Find Full Text PDF

Cleaning-in-place (CIP) is the most commonly used cleaning and sanitation procedure for removing fouling deposits. Traditional CIP includes a series of chemical cleaning cycles, including alkaline, acid, and sanitizer. However, these chemicals are hazardous to the environment and employees.

View Article and Find Full Text PDF

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!