The treatment of Human African trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important; pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp., has been identified as a candidate target, and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from Trypanosoma brucei (J. Med. Chem. 2010, 53, 221-229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. Eight compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus, although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136963 | PMC |
http://dx.doi.org/10.1021/jm500483b | DOI Listing |
Leishmaniasis is a neglected tropical disease caused by protozoan parasites and transmitted to humans by the sandfly vector. Currently, the disease has limited therapeutic alternatives. Thiourea derivatives were designed, synthesized, and screened for antileishmanial activity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:
Leishmaniasis is a parasitic disease, which spreads from the bite of an infected Phlebotomine fly to human hosts. The disease is characterized by a number of clinical manifestations, such as ulcerative lesions at the site of sandfly bite (cutaneous form), inflammation of mucosal membranes (mucosal leishmaniasis) or the deadly visceral form. This study was aimed to target pteridine reductase-1 (PTR1), a member of short chain dehydrogenases, which accounts for the reduction of conjugated and unconjugated pterins in Leishmania parasite.
View Article and Find Full Text PDFFitoterapia
October 2024
H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Electronic address:
The present study is focused on the isolation and identification of new therapeutic candidates from Chrysanthellum americanum Vatke., and their efficacy against pteridine reductase-1 (PTR1), a valid chemotherapeutic target in the Leishmania parasite. Henceforth, a new compound, chrysanamerine (1), along with 7 known compounds, polyacetylene 2, and flavonoids 3-8, were isolated from C.
View Article and Find Full Text PDFIn Silico Pharmacol
July 2024
Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
Unlabelled: Although many natural product-derived compounds possess anti-leishmanial activities in vitro and in vivo, their molecular targets in the parasite remain elusive. This is a major challenge in optimizing these compounds into leads. The pteridine reductase (PTR1) is peculiar for folate and pterin metabolism and has been validated as a drug target.
View Article and Find Full Text PDFACS Infect Dis
August 2024
Department of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy.
Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles () and 2-guanidino benzimidazoles (), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!