Janus kinase signaling activation mediates peritoneal inflammation and injury in vitro and in vivo in response to dialysate.

Kidney Int

Division of Nephrology and Hypertension, Department of Medicine, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California, USA.

Published: December 2014

Peritoneal membrane pathology limits long-term peritoneal dialysis (PD). Here, we tested whether JAK/STAT signaling is implicated and if its attenuation might be salutary. In cultured mesothelial cells, PD fluid activated, and the pan-JAK inhibitor P6 reduced, phospho-STAT1 and phospho-STAT3, periostin secretion, and cleaved caspase-3. Ex vivo, JAK was phosphorylated in PD effluent cells from long-term but not new PD patients. MCP-1 and periostin were increased in PD effluent in long term compared with new patients. In rats, twice daily, PD fluid infusion induced phospho-JAK, mesothelial cell hyperplasia, inflammation, fibrosis, and hypervascularity after 10 days of exposure to PD fluid. Concomitant instillation of a JAK1/2 inhibitor virtually completely attenuated these changes. Thus, our studies directly implicate JAK/STAT signaling in the mediation of peritoneal membrane pathology as a consequence of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.2014.209DOI Listing

Publication Analysis

Top Keywords

peritoneal membrane
8
membrane pathology
8
jak/stat signaling
8
janus kinase
4
kinase signaling
4
signaling activation
4
activation mediates
4
peritoneal
4
mediates peritoneal
4
peritoneal inflammation
4

Similar Publications

Inflammatory bowel disease, particularly Crohn's disease (CD), has been linked to modifications in mesenteric adipose tissue (MAT) and the phenomenon known as "creeping fat" (CrF). The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD. Notably, the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence, indicating the significant role of MAT in the pathogenesis of CD.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Pretargeted Multimodal Tumor Imaging by Enzymatic Self-Immobilization Labeling and Bioorthogonal Reaction.

J Am Chem Soc

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.

Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles .

View Article and Find Full Text PDF

In the development of inflammatory bowel disease (IBD), peritoneal macrophages contribute to the resident intestinal macrophage pool. Previous studies have demonstrated that oral administration of L-fucose exerts an immunomodulatory effect and repolarizes the peritoneal macrophages in vivo in mice. In this study, we analyzed the phenotype and metabolic profile of the peritoneal macrophages from mice, as well as the effect of L-fucose on the metabolic and morphological characteristics of these macrophages in vitro.

View Article and Find Full Text PDF

Synergistic antimicrobial efficacy of glabrol and colistin through micelle-based co-delivery against multidrug-resistant bacterial pathogens.

Phytomedicine

January 2025

Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

Background: Widespread bacterial infection and the spread of multidrug resistance (MDR) exhibit increasing threats to the public and thus require new antibacterial strategies. Coupled with the current slow pace of antibiotic development, the use of antibiotic adjuvants to revitalize existing antibiotics offers great potential.

Purpose: We aim to explore the synergistic antimicrobial mechanism of glabrol (GLA) and colistin (COL) while developing an innovative multifunctional micelle-based drug delivery system to enhance therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!