Background. Although chronic hyperandrogenism, a typical feature of polycystic ovary syndrome, is often associated with disturbed reproductive performance, androgens have been shown to promote ovarian follicle growth in shorter exposures. Here, we review the main effects of androgens on the regulation of early folliculogenesis and the potential of their application in improving follicular in vitro growth. Review. Androgens may affect folliculogenesis directly via androgen receptors (ARs) or indirectly through aromatization to estrogen. ARs are highly expressed in the granulosa and theca cells of early stage follicles and slightly expressed in mature follicles. Short-term androgen exposure augments FSH receptor expression in the granulosa cells of developing follicles and enhances the FSH-induced cAMP formation necessary for the transcription of genes involved in the control of follicular cell proliferation and differentiation. AR activation also increases insulin-like growth factor (IGF-1) and its receptor gene expression in the granulosa and theca cells of growing follicles and in the oocytes of primordial follicles, thus facilitating IGF-1 actions in both follicular recruitment and subsequent development. Conclusion. During the early and intermediate stages of follicular maturation, locally produced androgens facilitate the transition of follicles from the dormant to the growing pool as well as their further development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003798 | PMC |
http://dx.doi.org/10.1155/2014/818010 | DOI Listing |
Toxicol Sci
January 2025
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07103.
Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.
View Article and Find Full Text PDFResearch (Wash D C)
December 2024
Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Exposure to airborne fine particulate matter (PM) is strongly associated with poor fertility and ovarian damage. However, the mechanism underlying this remains largely unclear. Here, we found that PM markedly impaired murine ovarian reserve, decreased hormone levels, and aggravated ovarian inflammation.
View Article and Find Full Text PDFReprod Fertil Dev
December 2024
Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia.
Arch Gynecol Obstet
December 2024
Department of Assisted Reproductive Technologies and Fertility Preservation, Jeanne de Flandre Hospital, CHU Lille, 59000, Lille, France.
Introduction: Ovarian tissue cryopreservation (OTC) is recommended by scientific societies for women undergoing highly gonadotoxic cancer treatments. Following transplantation, the restoration of ovarian function is typically characterised by the resumption of spontaneous menstruation. Yet, a few studies have looked at the longitudinal hormonal variations following transplantation.
View Article and Find Full Text PDFMol Metab
November 2024
Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland; The Royal Veterinary College, University of London, London, NW1 0TU, UK. Electronic address:
Objectives: Susceptibility to obesity in humans is driven by the intricate interplay of genetic, environmental and behavioural factors. Moreover, the mechanisms linking maternal obesity to infertility remain largely understudied. In this study, we investigated how variable susceptibility to obesity in mice affects ovarian steroidogenesis, with a particular focus on the leptin-mediated dysregulation of Nodal signalling pathway in theca cells (TC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!