Patients present with a wide range of hypoxemia after acute pulmonary thromboembolism (APTE). Recent studies using fluorescent microspheres demonstrated that the scattering of regional blood flows after APTE, created by the embolic obstruction unique in each patient, significantly worsened regional ventilation/perfusion (V/Q) heterogeneity and explained the variability in gas exchange. Furthermore, earlier investigators suggested the roles of released vasoactive mediators in affecting pulmonary hypertension after APTE, but their quantification remained challenging. The latest study reported that mechanical obstruction by clots accounted for most of the increase in pulmonary vascular resistance, but that endothelin-mediated vasoconstriction also persisted at significant level during the early phase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070768 | PMC |
http://dx.doi.org/10.1086/675985 | DOI Listing |
J Clin Med
January 2025
Department of Cardiovascular & Thoracic Anaesthesia and Critical Care, University Hospital of Martinique, F-97200 Fort-de-France, Martinique, France.
Acute cardiovascular disorders are incriminated in up to 33% of maternal deaths, and the presence of sickle cell anemia (SCA) aggravates the risk of peripartum complications. Herein, we present a 24-year-old Caribbean woman with known SCA who developed a vaso-occlusive crisis at 36 weeks of gestation that required emergency Cesarean section. In the early postpartum period, she experienced fever with rapid onset of acute respiratory distress in the context of COVID-19 infection that required tracheal intubation and mechanical ventilatory support with broad-spectrum antibiotics and blood exchange transfusion.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.
Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Autmatic Control, University of Kaiserslautern-Landau, 67653 Kaiserslautern, Germany.
Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings of four sun-demanding woody species, . L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Jiyang College, Zhejiang A&F University, Zhuji 311800, China.
(), a significant ornamental plant species, is adversely affected by the severe soil heavy metal pollution resulting from rapid industrialization, particularly in terms of its growth environment. Cadmium (Cd), a representative heavy metal pollutant, poses a significant threat to plant growth and photosynthetic physiology. Despite the importance of understanding Cd stress resistance in rhododendrons, research in this area is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!