Background And Aims: Increasing soil salinity poses a major plant stress in agro-ecosystems worldwide. Surprisingly little is known about the quantitative effect of elevated salinity on secondary metabolism in many agricultural crops. Such salt-mediated changes in defence-associated compounds may significantly alter the quality of food and forage plants as well as their resistance against pests. In the present study, the effects of soil salinity on cyanogenesis in white clover (Trifolium repens), a forage crop of international importance, are analysed.
Methods: Experimental clonal plants were exposed to five levels of soil salinity, and cyanogenic potential (HCNp, total amount of accumulated cyanide in a given plant tissue), β-glucosidase activity, soluble protein concentration and biomass production were quantified. The attractiveness of plant material grown under the different salt treatments was tested using cafeteria-style feeding trials with a generalist (grey garden slug, Deroceras reticulatum) and a specialist (clover leaf weevil, Hypera punctata) herbivore.
Key Results: Salt treatment resulted in an upregulation of HCNp, whereas β-glucosidase activity and soluble protein concentration showed no significant variation among treatments. Leaf area consumption of both herbivore species was negatively correlated with HCNp, indicating bottom-up effects of salinity-mediated changes in HCNp on plant consumers.
Conclusions: The results suggest that soil salinity leads to an upregulation of cyanogenesis in white clover, which results in enhanced resistance against two different natural herbivores. The potential implications for such salinity-mediated changes in plant defence for livestock grazing remain to be tested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111384 | PMC |
http://dx.doi.org/10.1093/aob/mcu141 | DOI Listing |
Front Plant Sci
January 2025
Horticultural and Herbal Crop Environment Division, Soil Management Laboratory, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea.
Global agricultural challenges, especially soil degradation caused by abiotic stresses, significantly reduce crop productivity and require innovative solutions. Biochar (BC), a biodegradable product derived from agricultural and forestry residues, has been proven to significantly enhance soil quality. Although its benefits for improving soil properties are well-documented, the potential of BC to mitigate various abiotic stresses-such as drought, salinity, and heavy metal toxicity-and its effect on plant traits need further exploration.
View Article and Find Full Text PDFSci Rep
January 2025
Agricultural College of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China.
Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China.
In this study, the improvement effect of different organic substances on compacted cohesive soil in southern Xinjiang was discussed, with emphasis on the influence of different organic substances on soil chemical properties and microorganisms, so as to determine the best carbon source input and provide theoretical support for the rational utilization of organic materials in southern Xinjiang. Field experiments were conducted to evaluate the effects of farm fertilizer, biochar, commercial organic fertilizer, microbial fertilizer and mineral potassium humate on physical and chemical properties of viscous soil, agronomic properties and yield of cotton, with three gradients for each organic fertilizer. The results showed that: (1) all organic fertilizers improved soil structure, among which farm fertilizer significantly reduced soil bulk density and salinity, increased soil organic matter, total nitrogen and available nutrients, and thus increased cotton height, stem diameter and yield.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!