Core promoter factor TAF9B regulates neuronal gene expression.

Elife

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States CIRM Center of Excellence, Li Ka Shing Center For Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States.

Published: July 2014

Emerging evidence points to an unexpected diversification of core promoter recognition complexes that serve as important regulators of cell-type specific gene transcription. Here, we report that the orphan TBP-associated factor TAF9B is selectively up-regulated upon in vitro motor neuron differentiation, and is required for the transcriptional induction of specific neuronal genes, while dispensable for global gene expression in murine ES cells. TAF9B binds to both promoters and distal enhancers of neuronal genes, partially co-localizing at binding sites of OLIG2, a key activator of motor neuron differentiation. Surprisingly, in this neuronal context TAF9B becomes preferentially associated with PCAF rather than the canonical TFIID complex. Analysis of dissected spinal column from Taf9b KO mice confirmed that TAF9B also regulates neuronal gene transcription in vivo. Our findings suggest that alternative core promoter complexes may provide a key mechanism to lock in and maintain specific transcriptional programs in terminally differentiated cell types.DOI: http://dx.doi.org/10.7554/eLife.02559.001.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083437PMC
http://dx.doi.org/10.7554/eLife.02559DOI Listing

Publication Analysis

Top Keywords

core promoter
12
factor taf9b
8
taf9b regulates
8
regulates neuronal
8
neuronal gene
8
gene expression
8
gene transcription
8
motor neuron
8
neuron differentiation
8
neuronal genes
8

Similar Publications

Homeobox protein MSX-1 restricts hepatitis B virus by promoting ubiquitin-independent proteasomal degradation of HBx protein.

PLoS Pathog

January 2025

Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.

Hepatitis B virus (HBV) X protein (HBx) is a key factor for regulating viral transcription and replication. We recently characterized homeobox protein MSX-1 (MSX1) as a host restriction factor that inhibits HBV gene expression and genome replication by directly binding to HBV enhancer II/core promoter (EnII/Cp) and suppressing its promoter and enhancer activities. Notably, HBx expression was observed to be repressed more drastically by MSX1 compared to other viral antigens.

View Article and Find Full Text PDF

The GRAS transcription factor PtrPAT1 of functions in cold tolerance and modulates glycine betaine content by regulating the -like gene.

Hortic Res

January 2025

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.

GRAS, termed after gibberellic acid insensitive (GAI), RGA (repressor of GA1), and SCR (scarecrow), is a plant-specific transcription factor crucial for plant development and stress response. However, understanding of the functions played by the GRAS members and their target genes in citrus is limited. In this study, we identified a cold stress-responsive GRAS gene from , designated as PtrPAT1, by yeast one-hybrid library screening using the promoter of , a betaine aldehyde dehydrogenase (BADH)-like gene.

View Article and Find Full Text PDF

Nonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO), encoded by the gene , is implicated in several pathologies. As key enzyme in leukotriene biosynthesis, 5-LO plays a central role in inflammatory diseases, but the 5-LO pathway has also been linked to development of certain hematological and solid tumor malignancies. Of note, previous studies have shown that the leukemogenic fusion protein MLL-AF4 strongly increases gene promoter activity.

View Article and Find Full Text PDF

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

Article Synopsis
  • Sir2 is a histone deacetylase that helps maintain the stability of ribosomal RNA genes in budding yeast by preventing DNA breaks from leading to changes in rDNA copy number.
  • It does this by suppressing transcription near issues that arise during DNA replication, which can otherwise provoke double-strand breaks (DSBs) and subsequent DNA repair processes.
  • When Sir2 is absent, increased transcription can lead to DSBs, resulting in unstable rDNA copy numbers and the formation of extrachromosomal DNA, highlighting the importance of Sir2 in maintaining rDNA integrity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!