Role of aldehyde dehydrogenase 2 in 1-methy-4-phenylpyridinium ion-induced aldehyde stress and cytotoxicity in PC12 cells.

Neurochem Res

Department of Neurology, Nanhua Affiliated Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, People's Republic of China.

Published: September 2014

Aldehyde stress contributes to molecular mechanisms of cell death and the pathogenesis of Parkinson's disease (PD). The neurotoxin 1-Methy-4-Phenylpyridinium Ion (MPP(+)) is commonly used to model PD. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme detoxifying aldehydes. The aim of this study is to evaluate whether MPP(+)-induced neurotoxicity is involved in aldehyde stress by modulation of ALDH2. Our results demonstrated that treatment of PC12 cells with MPP(+) leads to aldehyde stress by increasing in loads of malondialdehyde and 4-hydroxynonenal, which indicated that MPP(+)-induced aldehyde stress contributes to its cytotoxicity in PC12 cells. We also showed that MPP(+) up-regulates the expression and activity of ALDH2 in PC12 cells and that inhibition of ALDH2 by its specific inhibitor daidzin prevents MPP(+)-induced decrease in cell viability and increases in apoptosis, oxidative stress and aldehyde stress in PC12 cells. These findings suggest that aldehyde stress contributes to MPP(+)-induced toxicity in PC12 cells by upregulation of ALDH2. This study provides a novel insight into the role of ALDH2 in the neurotoxicity of MPP(+).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-014-1376-1DOI Listing

Publication Analysis

Top Keywords

aldehyde stress
28
pc12 cells
24
stress contributes
12
aldehyde dehydrogenase
8
aldehyde
8
stress
8
cytotoxicity pc12
8
cells mpp+
8
pc12
6
cells
6

Similar Publications

The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.

View Article and Find Full Text PDF

Background: Paraquat (PQ) is a widely used pesticide, can cause severe intoxication and respiratory failure. Myrtenol (Mrl), an essential oil derived in various plants, exhibits several biological properties, including anti-inflammatory and antioxidant activities. This study aims to investigate the protective potential of Mrl against oxidative stress and inflammation caused by PQ exposure.

View Article and Find Full Text PDF

The objective of this study was to measure the different redox biomarker levels within the follicular fluid (FF) and evaluate correlations with embryo quality using the one follicle-one oocyte/embryo approach. The prospective study included 54 women (average age 34.6 ± 3.

View Article and Find Full Text PDF

Confers Iron Homeostasis Under Iron Deficiency in .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.

Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor in the tolerance to iron stresses.

View Article and Find Full Text PDF

Aldose Reductase: A Promising Therapeutic Target for High-Altitude Pulmonary Edema.

Int J Mol Sci

January 2025

Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.

The Qinghai-Tibet Plateau, famously known as the "Roof of the World", has witnessed a surge in individuals traveling or working there. However, a considerable percentage of these individuals may suffer from acute mountain sickness (AMS), with high-altitude pulmonary edema (HAPE) being a severe and potentially life-threatening manifestation. HAPE disrupts the balance of intrapulmonary tissue fluid, resulting in severe lung function impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!