Chemically made, atomically precise phosphine-stabilized clusters Au9(PPh3)8(NO3)3 were deposited on titania and silica from solutions at various concentrations and the samples heated under vacuum to remove the ligands. Metastable induced electron spectroscopy was used to determine the density of states at the surface, and X-ray photoelectron spectroscopy for analysing the composition of the surface. It was found for the Au9 cluster deposited on titania that the ligands react with the titania substrate. Based on analysis using the singular value decomposition algorithm, the series of MIE spectra can be described as a linear combination of 3 base spectra that are assigned to the spectra of the substrate, the phosphine ligands on the substrate, and the Au clusters anchored to titania after removal of the ligands. On silica, the Au clusters show significant agglomeration after heat treatment and no interaction of the ligands with the substrate can be identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4884642 | DOI Listing |
Molecules
January 2025
Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów 50a, 70-311 Szczecin, Poland.
Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.
View Article and Find Full Text PDFPLoS One
January 2025
Departamento de Reología y Mecánica de Materiales, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Ciudad Universitaria, Ciudad de México, México.
A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Delhi Skill and Entrepreneurship University, Delhi, 110089, India.
This study explores the thermal conductivity and viscosity of water-based nanofluids containing silicon dioxide, graphene oxide, titanium dioxide, and their hybrids across various concentrations (0 to 1 vol%) and temperatures (30 to 60 °C). The nanofluids, characterized using multiple methods, exhibited increased viscosity and thermal conductivity compared to water, with hybrid nanofluids showing superior performance. Graphene oxide nanofluids displayed the highest thermal conductivity and viscosity ratios, with increases of 52% and 177% at 60 °C and 30 °C, respectively, for a concentration of 1 vol% compared to base fluid.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry.
View Article and Find Full Text PDFEur J Pharm Sci
February 2025
Ss. Cyril and Methodius University in Skopje, Faculty of Pharmacy, Institute of Pharmaceutical Technology, Mother Theresa 47, 1000 Skopje, North Macedonia. Electronic address:
This study leverages Fourier Transform Near-Infrared (FT-NIR) spectroscopy to monitor the coating process of pharmaceutical tablets using PVA-based TiO-free films, with talc and iron oxides as opacifiers. By employing a combination of multivariate analytical techniques, the correlation between film coating progression and film thickness was evaluated. Assessment of coating thickness for different coating levels was performed by optical microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!