The importance and dosage of amino acids in nutritional support of various pathological conditions in ICU patients.

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub

Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic.

Published: September 2014

Background: Normal adults require twenty L-amino acids (AA) for protein synthesis. Functional AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction and immunity. Dietary supplementation with one or a mixture of these AA may be beneficial for ameliorating health problems at various stages of the life cycle and for optimizing of the efficiency of metabolic transformations. During disease, other amino acids also become essential. The principal goal of protein/amino acid administration in various pathological conditions in intensive care unit (ICU) patients is to provide the precursors of protein synthesis in tissues with high turnover and to protect skeletal muscle mass and function. Amino acid requirements in parenteral nutrition (PN) are higher when the patient is stressed/traumatized/infected than in the unstressed state. In severely ill ICU patients a higher provision of protein and amino acids has been associated with a lower mortality.

Methods And Results: An overview of the effects and dosage of amino acids in nutritional support of various pathological conditions in ICU patients is presented.

Conclusion: It was demonstrated that 2.0-2.5 g protein substrate/kg normal body weight/day is safe and could be optimal for the most critically ill adults to decrease the risk of morbidity and mortality in some pathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.5507/bp.2014.034DOI Listing

Publication Analysis

Top Keywords

amino acids
16
pathological conditions
16
icu patients
16
dosage amino
8
acids nutritional
8
nutritional support
8
support pathological
8
conditions icu
8
protein synthesis
8
acids
5

Similar Publications

Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek.

Plant Physiol Biochem

January 2025

Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.

Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.

View Article and Find Full Text PDF

Background: Glyphosate, as the main component of glyphosate pesticides, has been shown to have toxic effects on multiple human systems. However, the association between glyphosate and atherosclerotic cardiovascular disease (ASCVD) remains unclear. This study aims to explore the effect of glyphosate exposure on ASCVD.

View Article and Find Full Text PDF

Purpose: To systematically evaluate the efficacy and safety of creatine phosphate sodium in the treatment of viral myocarditis, and to provide guidance for its clinical treatment.

Methods: We conducted a search of The Cochrane Library, PubMed, EMbase, and Web of Science databases to retrieve randomized controlled trials (RCTs) on the use of creatine phosphate sodium (CPS) in the treatment of viral myocarditis. The search was conducted up to April 2024.

View Article and Find Full Text PDF

Leucine has gained recognition as an athletic dietary supplement in recent years due to its various benefits; however, the underlying molecular mechanisms remain unclear. In this study, 20 basketball players were recruited and randomly assigned to two groups. Baseline exercise performance-assessed through a 282-foot sprint, free throws, three-point field goals, and self-rated practice assessments-was measured prior to leucine supplementation.

View Article and Find Full Text PDF

Aim: Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.

Methods: Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!