Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.

Published: January 2015

In this study, novel active nanolayers in combination with surface plasmon resonance (SPR) system for zinc ion (Zn(2+)) detection has been developed. The gold surface used for the SPR system was modified with the novel developed active nanolayers, i.e. chitosan and chitosan-tetrabutyl thiuram disulfide (chitosan-TBTDS). Both chitosan and chitosan-TBTDS active layers were fabricated on the gold surface by spin coating technique. The system was used to monitor SPR signal for Zn(2+) in aqueous media with and without sensitivity enhancement by TBTDS. For both active nanolayers, the shift of resonance angle is directly proportional to the concentration of Zn(2+) in aqueous media. The higher shift of resonance angle was obtained for chitosan-TBTDS active nanolayer due to a specific binding of TBTDS with Zn(2+). The chitosan-TBTDS active nanolayer enhanced the sensitivity of detection down to 0.1 mg/l and also induced a selective detection towards Zn(2+).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.06.081DOI Listing

Publication Analysis

Top Keywords

active nanolayers
16
chitosan-tbtds active
12
surface plasmon
8
plasmon resonance
8
zinc ion
8
novel active
8
spr system
8
gold surface
8
zn2+ aqueous
8
aqueous media
8

Similar Publications

This work deals with the design of nanocomposite hydrogenation-dehydration bifunctional catalysts for the one-pot conversion of CO2 to dimethyl ether (DME), focusing on obtaining a high and homogeneous dispersion of a Cu-based CO2 hydrogenation phase into the pores of mesostructured supports. Particularly, three aluminosilicate mesostructured acid catalysts with catalytic activity towards methanol dehydration and featuring different porous structures (Al-MCM-41, Al-SBA-15, Al-SBA-16) were synthesized and used as supports to host a CuO/ZnO/ZrO2 (CZZ) CO2 hydrogenation catalyst for methanol synthesis. The use of a mesostructured support allows to maximize the exposed surface of the CO2 reduction function by nanostructuring it through its confinement within the mesochannels, thus obtaining nanocomposite bifunctional catalysts with an ultra-small hydrogenation nanophase.

View Article and Find Full Text PDF

We used density functional theory with a hybrid functional to investigate the structure and properties of [4H] (hydrogarnet) defects in -quartz as well as the reactions of these defects with electron holes and extra hydrogen atoms and ions. The results demonstrate the depassivation mechanisms of hydrogen-passivated silicon vacancies in -quartz, providing a detailed understanding of their stability, electronic properties, and behaviour in different charge states. While fully hydrogen passivated silicon vacancies are electrically inert, the partial removal of hydrogen atoms activates these defects as hole traps, altering the defect states and influencing the electronic properties of the material.

View Article and Find Full Text PDF

Skin-Inspired and Self-Powered Piezoionic Sensors for Smart Wearable Applications.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.

Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.

View Article and Find Full Text PDF

Tumor-microenvironment-mediated second near-infrared light activation multifunctional cascade nanoenzyme for self-replenishing O/HO multimodal tumor therapy.

J Colloid Interface Sci

April 2025

School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China. Electronic address:

Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

April 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!