The aim of this study was to analyze the temporal distribution of phytoplanktonic cyanobacteria in a site located in the freshwater tidal zone near the extraction point for the drinking water supply. Samples were taken considering three timescales as follows: hours, days, and weeks, during the period of highest development of cyanobacteria. The phytoplankton density, microcystin concentration (LR, RR, YR), and chlorophyll-a were related to meteorological variables (wind and temperature), tidal high, and physical-chemical variables (nutrients, pH, conductivity, light penetration). The results obtained in this study showed that the variables that primarily modulate the temporal distribution of cyanobacteria were temperature, pH, light penetration, conductivity, and nutrients (particularly NO3 (-) and NH4 (+)), while the winds and tide had a secondary effect, only evidenced at an hourly scale. Therefore, this timescale would be the most suitable for monitoring cyanobacterial populations, when the amount of cyanobacterial cells exceeds the alert I level proposed by the World Health Organization. This recommendation is particularly important for the water intake zones in Río de la Plata, which are vulnerable to the damage generated by cyanobacteria on the water quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-014-3914-3 | DOI Listing |
Many sharks, rays and skates are highly threatened and vulnerable to overexploitation, as such reliable monitoring of elasmobranchs is key to effective management and conservation. The mobile and elusive nature of these species makes monitoring challenging, particularly in temperate waters with low visibility. Environmental DNA (eDNA) methods present an opportunity to study these species in the absence of visual identification or invasive techniques.
View Article and Find Full Text PDFData Brief
February 2025
Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Incorporating ecological connectivity into spatial conservation planning is increasingly recognized as a key strategy to facilitate species movements, especially under changing environmental conditions. However, obtaining connectivity data is challenging, especially in the marine realm. Sea currents are essential for exploring marine structural connectivity, but transforming sea current data into spatial connectivity matrices involves complex and resource-intensive processing steps to ensure accuracy and usability.
View Article and Find Full Text PDFFront Psychiatry
January 2025
Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.
Introduction: While functional neuroimaging studies have reported on the neural correlates of severe antisocial behaviors, such as delinquency, little is known about whole brain resting state functional connectivity (FC) of incarcerated adolescents (IA). The aim of the present study is to identify potential differences in resting state connectivity between a group of male IA, compared to community adolescents (CA). The second objective is to investigate the relations among FC and psychological factors associated with delinquent behaviors, namely psychopathic traits (callous unemotional traits, interpersonal problems, and impulsivity), socio-cognitive (empathy and reflective functioning RF) impairments and psychological problems (externalizing, internalizing, attention and thought problems).
View Article and Find Full Text PDFPeerJ
January 2025
Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.
Vetulicolians are an enigmatic phylum of extinct Cambrian marine invertebrates. They are particularly diverse in the Chengjiang Biota of China, but representatives have been recovered from other Fossil-Lagerstätten (Cambrian Stage 3-Drumian). These organisms are characterized by a bipartite body, which is split into an anterior section and a posterior segmented section connected by a narrow constriction.
View Article and Find Full Text PDFMed Vet Entomol
January 2025
Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
Dermacentor variabilis (Say) (Acari: Ixodidae) is a vector for pathogens that can impact human and animal health. The geographic range of this species is expanding, but there are some areas with limited up-to-date information on the distribution of D. variabilis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!