The freshwater golden apple snail, Pomacea canaliculata, is one of the world's 100 worst invasive alien species. The snails' wide distribution, high abundance, and sensitivity to environmental pollution make them a potential bioindicator for environmental contamination. In this study, the biochemical status of golden apple snails collected from paddy fields throughout the island of Taiwan was examined. This study found that the biochemical status of apple snails collected from paddy fields differed from that of animals bred and maintained in the laboratory. Furthermore, certain biochemical endpoints of the snails collected from the paddy fields before and after agricultural activities were also different-hemolymphatic vitellogenin protein was induced in male snail after exposure to estrogen-like chemicals, the hepatic monooxygenase (1.97 +/- 0.50 deltaA(650mm) 30 min(-1) mg(-1) protein in control group) and glutathione S transferase (0.02 +/- 0.01 delta A(340mm) 30 min(-1) mg(-1) protein in control group) snails exposed to pesticides, as well as the hepatopancreatic levels of aspartate aminotransferase (450.00 +/- 59.40 U mg(-1) mg(-1) protein in control group) and alanine aminotransferase (233.27 +/- 42.09 U mg(-1) mg(-1) protein in control group) decreased the indicating that xenobiotics destroyed hepatopancreatic. The above findings reveal that apple snail could be used as a practical bioindicator to monitor anthropogenic environmental pollution.

Download full-text PDF

Source

Publication Analysis

Top Keywords

paddy fields
16
mg-1 protein
16
protein control
16
control group
16
golden apple
12
apple snail
12
snails collected
12
collected paddy
12
snail pomacea
8
pomacea canaliculata
8

Similar Publications

Boron, a crucial element for plant growth, has been demonstrated to mitigate cadmium (Cd) absorption in rice seedlings. However, its impact on Cd accumulation in rice grains and the underlying regulatory mechanisms remain poorly understood. The current study explored the roles of boron in reducing Cd accumulation and promoting ripening in rice through pot and hydroponic experiments.

View Article and Find Full Text PDF

The stepped paddy fields (SPFs) are important for food security and sustainable development. The unique spatial structure and complex hydrological processes in this system make it difficult to understand the migration of pollutants. In this study, microplastic pollution was investigated in the water and soil from Ziquejie SPFs, China.

View Article and Find Full Text PDF

Optimizing nitrogen fertilization rate to achieve high yield and high soil quality in paddy ecosystems with straw incorporation.

J Environ Manage

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Plastic film mulching is a potentially water-saving cultivation strategy, while straw return coupled with nitrogen (N) fertilization can ensure sustainable soil productivity and increased soil organic matter (SOM) sequestration. Nevertheless, a comprehensive understanding of how soil quality and agronomic productivity respond to long-term N fertilization and straw incorporation practices under non-flooded conditions with plastic film mulching remains elusive. Herein, a 15-year field experiment with straw incorporation practices (straw return and no straw return) under various N fertilization rates (N0, N1, N2, N3, and N4: 0, 45, 90, 135, and 180 kg N ha, respectively) was conducted to explore their long-term effects.

View Article and Find Full Text PDF

Stable Soil Biota Network Enhances Soil Multifunctionality in Agroecosystems.

Glob Chang Biol

January 2025

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.

Unraveling how agricultural management practices affect soil biota network complexity and stability and how these changes relate to soil processes and functions is critical for the development of sustainable agriculture. However, our understanding of these knowledge still remains unclear. Here, we explored the effects of soil management intensity on soil biota network complexity, stability, and soil multifunctionality, as well as the relationships among these factors.

View Article and Find Full Text PDF

Runoff and accumulation of microplastics derived from polymer-coated fertilizer in japanese paddy fields.

Environ Toxicol Chem

January 2025

Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836 Japan.

Polymer-coated fertilizers, widely used in rice cultivation in Japan, contribute to reactive nitrogen management and agricultural productivity but are a source of microplastics in the environment. Here, we investigated microplastics derived from polymer-coated fertilizer (microcapsule) runoff in Japanese paddy fields at 38 sites to quantitatively assess the behavior of microcapsules in paddy fields, and to estimate the total amount of runoff and accumulation in Japan. We also examined the factors causing variations in the amount of runoff among paddy fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!