In this work, the deflection equation of a piezoelectrically-driven micromachined ultrasonic transducer (PMUT) is analytically determined using a Green's function approach. With the Green's function solution technique, the deflection of a circular plate with an arbitrary circular/ring electrode geometry is explicitly solved for axisymmetric vibration modes. For a PMUT with one center electrode covering ≈60% of the plate radius, the Green's function solution compares well with existing piece-wise and energy-based solutions with errors of less than 1%. The Green's function solution is also simpler than them requiring no numerical integration, and applies to any number of axisymmetric electrode geometries. Experimentally measured static deflection data collected from a fabricated piezoelectric micro ultrasonic transducer (PMUT) is further used to validate the Green's function model analysis. The center deflection and deflection profile data agree well with the Green's function solution over a range of applied bias voltages (5 to 21 V) with the average error between the experimental and Green's function data less than 9%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2013.2756DOI Listing

Publication Analysis

Top Keywords

green's function
28
function solution
16
micromachined ultrasonic
8
ultrasonic transducer
8
transducer pmut
8
green's
7
function
7
deflection
5
analytic solution
4
solution n-electrode
4

Similar Publications

Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime.

View Article and Find Full Text PDF

Sprengel's Deformity (SD) is a rare condition of the shoulder girdle, appearing as the principal congenital anomaly of the shoulder in paediatric patients. The aim of this study is to document the combined experience of two paediatric orthopaedic departments in managing SD using the modified Green Procedure, with a specific emphasis on the clinical and functional outcomes reported by patients; Methods: from June 2010 to February 2023, 42 shoulders in 40 paediatric patients were surgically treated for SD at two paediatric orthopaedic departments. All patients were treated using the modified Green Procedure with or without clavicle osteotomy.

View Article and Find Full Text PDF

The thermoelectric properties of hybrid systems based on a single-level quantum dot coupled to a normal-metal/half-metallic lead and attached to a topological superconductor wire are investigated. The topological superconductor wire is modeled by a spinless p-wave superconductor which hosts both a Majorana bound state at its extremity and above gap quasiparticle excitations. The main interest of our investigation is to study the interplay of sub-gap and single-particle tunneling processes and their contributions to the thermoelectric response of the considered system.

View Article and Find Full Text PDF

Superdiffusion is usually defined as a random walk process of a molecule, in which the time evolution of the mean-squared displacement, σ2, of the molecule is a power function of time, σ2(t)∼t2/γ, with γ∈(1,2). An equation with a Riesz-type fractional derivative of the order γ with respect to a spatial variable (a fractional superdiffusion equation) is often used to describe superdiffusion. However, this equation leads to the formula σ2(t)=κt2/γ with κ=∞, which, in practice, makes it impossible to define the parameter γ.

View Article and Find Full Text PDF

Introduction: Straw phonation therapy, a form of semi-occluded vocal tract (SOVT) exercise, is commonly used to help treat various voice disorders. Although straw phonation therapy has been studied extensively for decades, the impact of straw depth on vocal function remains unexplored. This study aims to quantify the effects of various straw vocal tract insertion depths (VTID) into the vocal tract on common aerodynamic parameters such as phonation threshold pressure (PTP), phonation threshold flow (PTF), and phonation threshold power (PTW) in an ex vivo canine model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!