AI Article Synopsis

  • The study uses IR spectroscopy and DFT calculations to analyze how aromatic substituents impact π-hydrogen bonding in phenol derivatives and benzene.
  • Simultaneous formation of two types of hydrogen bonds stabilizes these complexes, with the acidic O-H group of phenols being the main driver of interaction.
  • Variations in the stretching frequencies of O-H bonds indicate that electron-withdrawing groups significantly influence hydrogen bonding energy, while electron-donating groups have minimal effects; several DFT functionals are tested for accuracy in predicting these frequency shifts.

Article Abstract

IR spectroscopic experiments and theoretical DFT computations reveal the effects of aromatic substituents on π-hydrogen bonding between monosubstituted phenol derivatives and benzene. Simultaneous formation of two π-hydrogen bonds (red-shifting O-H···π and blue-shifting ortho-C-H···π) contribute to the stability of these complexes. The interaction of the acidic phenol O-H proton-donating group with the benzene π-system dominates the complex formation. The experimental shifts of O-H stretching frequencies for the different phenol complexes vary in the range 45-74 cm(-1). Strong effects on hydrogen-bonding energies and frequency shifts of electron-withdrawing aromatic substituents and very weak influence of electron-donating groups have been established. Experimental quantities and theoretical parameters are employed in rationalizing the properties of these complexes. The acidities of the proton-donating phenols describe quantitatively the hydrogen-bonding process. The results obtained provide clear evidence that, when the structural variations are in the proton-donating species, the substituent effects on π-hydrogen bonding follow classic mechanisms, comprising both resonance and direct through-space influences. The performance of three alternative DFT functionals (B3LYP, B97-D, and PBE0 combined with the 6-311++G(2df,2p) basis set) in predicting the O-H frequency shifts upon complexation is examined. For comparison, O-H frequency shifts for several complexes were also determined at MP2/6-31++G(d,p).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo500732mDOI Listing

Publication Analysis

Top Keywords

π-hydrogen bonding
12
frequency shifts
12
substituent effects
8
effects π-hydrogen
8
aromatic substituents
8
o-h frequency
8
complexes
5
experimental measurement
4
measurement theory
4
theory substituent
4

Similar Publications

"Suspended" Single Rhenium Atoms on Nickel Oxide for Efficient Electrochemical Oxidation of Glucose.

J Am Chem Soc

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re-phen/NiO).

View Article and Find Full Text PDF

Cytotoxic and Noncytotoxic Steroidal Constituents of .

J Nat Prod

January 2025

Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

(-)-Cryptanoside A () was identified previously as a major cytotoxic component of the stems of collected in Laos, which mediates its activity by targeting Na/K-ATPase (NKA), with hydrogen bonds formed between its 11- and 4'-hydroxy groups and NKA being observed in its docking profile. In a continuing investigation, and its 17-epimer, (-)-17--cryptanoside A (), and the new (+)-2-hydroxyandrosta-4,6-diene-3-one-17-carboxylic acid () and the known (+)-2,21-dihydroxypregna-4,6-diene-3,20-dione or 2-hydroxy-6,7-didehydrocortexone () pregnane-type steroids were isolated from . In addition, (-)-11,4'-di--acetylcryptanoside A () has been synthesized from the acetylation of .

View Article and Find Full Text PDF

The mechanisms of NO reduction by CO over nitrogen-doped graphene (N-graphene)-supported single-atom Ni catalysts in the presence of O, HO, CO, and SO have been studied via density functional theory (DFT) modeling. The catalyst is represented by a single Ni atom bonded to four N atoms on N-graphene. Several alternative reaction pathways, including adsorption of NO on the Ni site, direct reduction of NO by CO, decomposition of NO to NO followed by reduction of NO to N, formation of active oxygen radical O*, and reduction of O* by CO, were hypothesized and the energy barrier corresponding to each of the reaction steps was calculated using DFT.

View Article and Find Full Text PDF

The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY > NS > NO > AZ with the respective activation Gibbs free energies of 13.7, 17.

View Article and Find Full Text PDF

Context-Dependent Heterotypic Assemblies of Intrinsically Disordered Peptides.

J Am Chem Soc

January 2025

Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States.

Despite their critical role in context-dependent interactions for protein functions, intrinsically disordered regions (IDRs) are often overlooked for designing peptide assemblies. Here, we exploit IDRs to enable context-dependent heterotypic assemblies of intrinsically disordered peptides, where "context-dependent" refers to assembly behavior driven by interactions with other molecules. By attaching an aromatic segment to oppositely charged intrinsically disordered peptides, we achieve a nanofiber formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!