The amyR2 allele of the Bacillus subtilis alpha-amylase cis-regulatory region enhances production of amylase and transcription of amyE, the structural gene, by two- to threefold over amyR1. The amylase gene bearing each of these alleles was cloned on plasmids of about 10 to 15 copies per chromosome. Transcription of the cloned amylase gene by each amyR allele was activated at the end of exponential growth and was subject to catabolite repression by glucose. The amount of amylase produced was roughly proportional to the copy number of the plasmid, and cells containing the amyR2-bearing plasmid, pAR2, produced two- to threefold more amylase than cells with the amyR1 plasmid, pAMY10. Deletion of DNA 5' to the alpha-amylase promoter, including deletion of the A + T-rich inverted repeat found in amyR1 and amyR2, had no effect on expression or transcription of alpha-amylase. Deletion of DNA 3' to the amyR1 promoter did not impair temporal activation of chloramphenicol acetyltransferase in amyR1-cat-86 transcriptional fusions, but catabolite repression was abolished. When an 8-base-pair linker was inserted in pAMY10 at the same site from which the 3' deletion was made, amylase expression doubled and was repressed less by glucose. Both the deletion and the insertion disrupted four bases at the 3' end of the putative amylase operator region. Site-directed mutagenesis was used to change bases in the promoter-operator region of amyR1 to their amyR2 counterparts. Either change alone increased amylase production twofold, but only the change at +7, next to the linker insertion of 3' deletion site, yielded the increased amylase activity in the presence of glucose that is characteristic of the amyR2 strain. The double mutant behaved most like strains carrying the amyR2 allele.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC210108PMC
http://dx.doi.org/10.1128/jb.171.7.3656-3666.1989DOI Listing

Publication Analysis

Top Keywords

amylase
9
bacillus subtilis
8
subtilis alpha-amylase
8
amyr2 allele
8
two- threefold
8
amylase gene
8
catabolite repression
8
deletion dna
8
amyr1 amyr2
8
increased amylase
8

Similar Publications

Ribosome pausing in amylase producing Bacillus subtilis during long fermentation.

Microb Cell Fact

January 2025

Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

Background: Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions.

View Article and Find Full Text PDF

A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).

View Article and Find Full Text PDF

Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway.

Int J Biol Macromol

January 2025

College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:

Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.

View Article and Find Full Text PDF

D-glucose-conjugated thioureas containing 2-aminopyrimidine as potential multitarget inhibitors for type 2 diabetes mellitus: Synthesis and biological activity study.

Comput Biol Med

January 2025

Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; VNU University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam.

α-d-Glucose-conjugated thioureas 8a-w of substituted 4,6-diaryl-2-aminopyrimindines were designed, synthesized, and screened for their antidiabetic inhibitory activity. The thioureas with the strongest potential inhibitory activity included 8f (IC = 11.32 ± 0.

View Article and Find Full Text PDF

This study evaluates the efficiency of 20 Natural Deep Eutectic Solvents (NADES) formulations for extracting curcuminoids and other bioactive compounds from turmeric and emphasize their ability to preserve and enhance antioxidant, antimicrobial, antidiabetic, and skin depigmentation effects. The NADES formulations, prepared using choline chloride (ChCl) combined with sugars, carboxylic acids, glycerol, amino acids, urea, polyols, and betaine, were assessed for their extraction efficiency based on the total phenolic content and curcumin concentration. Fourier transform infrared spectroscopy was employed to characterize the synthesized NADES and confirm their chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!