A kinetic study is reported for SNAr reactions of 1-(Y-substituted-phenoxy)-2,4-dinitrobenzenes (1a-1h) with amines in MeCN. The plots of pseudo-first-order rate constant versus amine concentration curve upward, indicating that the reactions are catalyzed by a second amine molecule. The Brønsted-type plots for the reaction of 1-(4-nitrophenyl)-2,4-dinitrobenzene (1a) with secondary amines are linear with βnuc = 1.10 and 0.85 for the uncatalyzed and catalyzed reactions, respectively, while the Yukawa-Tsuno plots for the reactions of 1a-1h with piperidine result in excellent linear correlations with ρY = 1.85 and r = 0.27 for the uncatalyzed reaction and ρY = 0.73 and r = 0.23 for the catalyzed reaction. The catalytic effect decreases with increasing amine basicity or electron-withdrawing ability of the substituent Y in the leaving group. Activation parameters calculated from the rate constants measured at five different temperatures for the catalyzed reaction of 1a with piperidine are ΔH(‡) = 0.38 kcal/mol and ΔS(‡) = -55.4 cal/(mol K). The catalyzed reaction from a Meisenheimer complex (MC(±)) is proposed to proceed through a concerted mechanism with a cyclic transition-state rather than via a stepwise pathway with an anionic intermediate, MC(-). Deuterium kinetic isotope effects provide further insight into the nature of the concerted transition state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo5011872 | DOI Listing |
Org Lett
January 2025
Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
1,1-Difluoroallenes underwent regioselective [2 + 2] and [3 + 2] cycloadditions with aldehydes using Au(I) catalysts. An AuCl catalyst enabled an α,β-selective [2 + 2] cycloaddition of 1,1-difluoroallenes, yielding ()-3-alkylidene-2,2-difluorooxetanes. Conversely, an AuCl(IPr)-AgSbF catalyst facilitated an α,γ-selective [3 + 2] cycloaddition, followed by dehydrofluorination to produce aromatized 2-fluorofurans.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.
The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, State Key Laboratory of Biotherapy, CHINA.
Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.
View Article and Find Full Text PDFJ Org Chem
January 2025
College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China.
Herein, we present a copper-catalyzed, three-component intermolecular 1,4-alkylarylation of 1,3-enynes with ethers and aryl boronic acids. This method, driven by α-C(sp)-H functionalization of the oxygen atom in ethers, regioselectively produces various tetrasubstituted allenes from simple, readily available precursors. Key features include mild reaction conditions and a simple catalytic system.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Biochemistry and Center of Excellent in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand. Electronic address:
Bacterial luciferase (LuxAB) catalyzes the conversion of reduced flavin mononucleotide (FMNH⁻), oxygen, and a long-chain aldehyde to oxidized FMN, the corresponding acid and water with concomitant light emission. This bioluminescence reaction requires the reaction of a flavin reductase such as LuxG (in vivo partner of LuxAB) to supply FMNH⁻ for the LuxAB reaction. LuxAB is a well-known self-sufficient luciferase system because both aldehyde and FMNH⁻ substrates can be produced by the associated enzymes encoded by the genes in the lux operon, allowing the system to be auto-luminous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!