Neurochemical and behavioral effects of chronic unpredictable stress.

Behav Pharmacol

aDepartment of Psychology, Northern Illinois University, DeKalb, Illinois bDepartment of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah cDepartment of Psychology, The University of Albany, Albany, New York dDepartment of Chemistry, Institute for Arctic Biology and the IDeA Network for Biomedical Research Excellence, The University of Alaska, Fairbanks, Alaska, USA.

Published: September 2014

Chronic stress can influence behaviors associated with medial prefrontal cortex (mPFC) function, such as cognition and emotion regulation. Dopamine in the mPFC is responsive to stress and modulates its behavioral effects. The current study tested whether exposure to 10 days of chronic unpredictable stress (CUS) altered the effects of acute elevation stress on dopamine release in the mPFC and on spatial recognition memory. Male rats previously exposed to CUS or nonstressed controls were tested behaviorally, underwent microdialysis to assess mPFC dopamine levels or underwent blood sampling for corticosterone analysis. Dopamine in the mPFC significantly increased in both groups during acute elevation stress compared with baseline levels, but the level was attenuated in CUS rats compared with controls. Control rats exposed to elevation stress immediately before the T-maze test showed impaired performance, whereas CUS rats did not. No group differences were observed in general motor activity or plasma corticosterone levels following elevation stress. The present results indicate that prior exposure to this CUS procedure reduced dopamine release in the mPFC during acute elevation stress and prevented the impairment of performance on a spatial recognition test following an acute stressor. These findings may contribute to an understanding of the complex behavioral consequences of stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119502PMC
http://dx.doi.org/10.1097/FBP.0000000000000061DOI Listing

Publication Analysis

Top Keywords

elevation stress
20
acute elevation
12
stress
10
behavioral effects
8
chronic unpredictable
8
unpredictable stress
8
dopamine mpfc
8
dopamine release
8
release mpfc
8
spatial recognition
8

Similar Publications

Since the establishment of the COVID-19 pandemic, a range of studies have been developed to understand the pathogenesis of SARS-CoV-2 infection, vaccine development, and therapeutic testing. However, the possible impacts that these viruses can have on non-target organisms have been explored little, and our knowledge of the consequences of the COVID-19 pandemic for biota is still very limited. Thus, the current study aimed to address this knowledge gap by evaluating the possible impacts of oral exposure of C57Bl/6 J female mice to SARS-CoV-2 lysate protein (at 20 µg/L) for 30 days, using multiple methods, including behavioral assessments, biochemical analyses, and histopathological examinations.

View Article and Find Full Text PDF

Cellular prion protein (PRNP) has been implicated in various physiological processes in different cell types, for decades. Little has been known how PRNP functions in multiple, yet related processes within a particular system. In our current study, with the aid of high-throughput RNA-sequencing technique, we have presented an overall transcriptome profile of rat vascular smooth muscle cells (VSMCs) with Prnp knockdown.

View Article and Find Full Text PDF

The close interaction of mitochondrial fission and mitophagy, two crucial mechanisms, is key in the progression of myocardial ischemia-reperfusion (IR) injury. However, the upstream regulatory mechanisms governing these processes remain poorly understood. Here, we demonstrate a marked elevation in Nr4a1 expression following myocardial IR injury, which is associated with impaired cardiac function, heightened cardiomyocyte apoptosis, exacerbated inflammatory responses, and endothelial dysfunction.

View Article and Find Full Text PDF

Although climate change has received significant global attention, there has been a distinct disregard for the issue of psychological well-being. The elevated floods resulting from climate change have substantial impacts on both physical infrastructure and human well-being. This includes the coerced relocation of individuals from their homes, unemployment, setbacks, and the disruption of communities.

View Article and Find Full Text PDF

Exogenous 24-Epibrassinolide alleviates salt stress in Okra L by increasing the expression of pathway genes () and .

Physiol Mol Biol Plants

December 2024

Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.

Given the rising population and food demand, it is imperative to devise solutions to enhance plant resilience against abiotic stresses. Salinity stress impacts plant growth but also hampers plant performance and productivity. Plant hormones have emerged as a viable remedy to mitigate the detrimental effects of salinity stress on plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!