Background: Immunotherapy has been developed to treat cancers. There are many signaling pathways involved in cytokine induced apoptosis of many cancers but their role remains unclear in some cancers such as leukemia.
Objective: To investigate the involvement of the nitric oxide (NO) and p53 tumor suppressor gene in apoptotic pathways induced by cytokines in leukemic cell lines.
Methods: Leukemic cell lines, Kasumi-1 (AML-M2) and Molt- 4 (ALL) were treated with cytokines, interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), interferon-γ (IFN-γ). The effect of cytokines on the induction cell apoptosis was analysed by flow cytometry. In addition, nitric oxide production and p53 protein levels were measured by using the Griess method and Western blot, respectively.
Results: Upon cytokine treatment, there was a significant increase in the percentage of cell apoptosis in both leukemic cell lines. The highest apoptosis was shown in 40 U/ml IFN-γ treated cells. In addition, nitric oxide and p53 protein increased in IFN-γ treated cells. There was a reduction of apoptosis and p53 level after adding the inducible nitric oxide synthase inhibitor, SMT.
Conclusion: p53 and nitric oxide are involved in the mediation of apoptosis induced by cytokines in Kasumi-1 and Molt-4 leukemic cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.12932/AP0378.32.2.2013 | DOI Listing |
Semin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamilnadu 621007, India. Electronic address:
This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics. Electronic address:
Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:
The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. Electronic address:
Nitric oxide (NO) has been highlighted as a key gaseous signaling molecule in the body, playing a central role in various physiological and pathological processes. However, a comprehensive analysis of NO metabolism dynamics in living cells remains a significant challenge. To address this, we have developed and characterized a novel genetically encoded NO fluorescence sensor, GefiNO, to investigate NO metabolism dynamics in living cells and subcellular organelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!