Clinical studies in lysosomal storage diseases: Past, present, and future.

Rare Dis

PFB Consulting; Pennington, NJ USA.

Published: July 2014

AI Article Synopsis

  • Lysosomal storage disorders (LSDs) are a group of over 40 diseases, some of which have potential treatments, but face regulatory and operational challenges in study design and drug approval.
  • Orphan drug legislation in Europe and the US has spurred drug development for LSDs, but varying regulatory standards lead to unequal access to treatments globally.
  • Study designs are complicated due to the small patient populations available, requiring innovative methods and flexibility from regulators to improve the chances of successful outcomes and patient access to new therapies.

Article Abstract

Lysosomal storage disorders (LSDs) consist of over 40 diseases, some of which are amenable to treatment. In this review, we consider the regulatory context in which LSDs studies are performed, highlight design specificities and explore operational challenges. Orphan drug legislations, both in Europe and US, were effective to stimulate LSDs drug development. However, regulators flexibilities toward approval vary leading to global discrepancies in access to treatments. Study designs are constrained because few patients can be studied. This implies LSDs treatments need to demonstrate large levels of clinical efficacy. If not, an appropriate level of evidence is difficult to achieve. While biomarkers could address this issue, none have been truly accepted as primary outcome. Enrichment of study population can increase the chance of success, especially with clinical outcomes. Adaptive designs are operationally challenging. Innovative methods of analysis can be used, notably using a patient as his/her own control and responder analysis. The use of extension phases and patient registries as a source of historical comparison can facilitate data interpretation. Operationally, few patients are available per centers and multiple centers need to be initiated in multiple countries. This impacts time-lines and budget. In the future, regulators flexibility will be essential to provide patients access to innovative treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915565PMC
http://dx.doi.org/10.4161/rdis.26690DOI Listing

Publication Analysis

Top Keywords

lysosomal storage
8
clinical studies
4
studies lysosomal
4
storage diseases
4
diseases future
4
future lysosomal
4
storage disorders
4
lsds
4
disorders lsds
4
lsds consist
4

Similar Publications

Mitochondria and lysosomes are critical for neuronal homeostasis, as highlighted by their dysfunction in various neurological diseases. Recent studies have identified dynamic membrane contact sites between mitochondria and lysosomes, independent of mitophagy and the lysosomal degradation of mitochondrial-derived vesicles (MDVs), allowing bidirectional crosstalk between these cell compartments, the dynamic regulation of organelle networks, and substance exchanges. Emerging evidence suggests that abnormalities in mitochondria-lysosome contact sites (MLCSs) contribute to neurological diseases, including Parkinson's disease, Charcot-Marie-Tooth (CMT) disease, lysosomal storage diseases, and epilepsy.

View Article and Find Full Text PDF

Objective: GM1 gangliosidosis is a rare lysosomal storage disorder characterized by the accumulation of GM1 gangliosides in neuronal cells, resulting in severe neurodegeneration. Currently, limited data exists on the brain volumetric changes associated with this disease. This study focuses on the late-infantile and juvenile subtypes of type II GM1 gangliosidosis, aiming to quantify brain volumetric characteristics to track disease progression.

View Article and Find Full Text PDF

The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease.

View Article and Find Full Text PDF

Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.

Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.

View Article and Find Full Text PDF

Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!