Ionizing radiation exposure can induce profound changes in intracellular components, potentially leading to diverse health effects in exposed individuals. Any cellular component can be damaged by radiation, but some components affect cellular viability more profoundly than others. The ionization caused by radiation lasts longer than the initial inciting incident, continuing as 1 ionization incident causes another. In some cases, damage to DNA can lead to cellular death at mitosis. In other cases, activation of the genetic machinery can lead to a genetic cascade potentially leading to mutations or cell death by apoptosis. In the third of 5 articles on the management of injuries and illnesses caused by ionizing radiation, the authors provide a clinically relevant overview of the pathophysiologic process associated with potential exposure to ionizing radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7556/jaoa.2014.109 | DOI Listing |
Environ Monit Assess
January 2025
Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal, 249199, India.
Ionizing radiation emitted from radionuclides is present everywhere in the environment. It is the main source of health hazards to the general public. The present study elaborates on the analysis of primordial radionuclides in the collected soil samples from the Main Central Thrust (MCT) region of Uttarakhand Himalaya in a grid pattern.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
From Rehabilitation Research and Development, Palo Alto Veterans Administration Medical Center and the Schools of Medicine and Engineering, Stanford University, Stanford, Calif.
A biologically safe, noninvasive method for visualizing bone and soft tissue relationships has been developed recently. Termed the ultrasonic transmission imaging system, its advantages include visualization of soft tissues in real time while motion is underway. The image can be correlated to standard x-ray films, but since no ionizing radiation is involved, repeated risk-free visualization of extremities for either diagnostic assessment or biomechanical studies is permitted.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Faculty of Mathematics and Natural Sciences , Hochschule Darmstadt, Schöfferstr., 3, Darmstadt, Hessen, 64295, GERMANY.
Magnetic Particle Imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Cell- and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Emerging evidence suggests that fusion of cancer cells with leucocytes, such as macrophages, plays a significant role in cancer metastasis and results in tumor hybrid cells that acquire resistance to chemo- and radiation therapy. However, the precise mechanisms behind the leukocyte-cancer cell fusion remain unclear. The present in vitro study explores the presence of fusion between the monocyte cell line (THP-1) and the breast cancer cell line (MCF-7) in relation to the expression of CD36 and phosphatidylserine with and without treatment of these cells with ionizing radiation.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
Background: Enumeration of residual DNA repair foci 24 hours or more after exposure to ionizing radiation (IR) is often used to assess the efficiency of DNA double-strand break repair. However, the relationship between the number of residual foci in irradiated cells and the radiation dose is still poorly understood. The aim of this work was to investigate the dose responses for residual DNA repair foci in normal human fibroblasts after X-ray exposure in the absorbed dose range from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!