We examined the seasonal changes of the cecal microbiota of captive arctic ground squirrels (Urocitellus parryii) by measuring microbial diversity and composition, total bacterial density and viability, and short-chain fatty acid concentrations at four sample periods (summer, torpor, interbout arousal, and posthibernation). Abundance of Firmicutes was lower, whereas abundances of Bacteroidetes, Verrucomicrobia, and Proteobacteria were higher during torpor and interbout arousal than in summer. Bacterial densities and percentages of live bacteria were significantly higher in summer than during torpor and interbout arousal. Likewise, total short-chain fatty acid concentrations were significantly greater during summer than during torpor and interbout arousal. Concentrations of individual short-chain fatty acids varied across sample periods, with butyrate concentrations higher and acetate concentrations lower during summer than at all other sample periods. Characteristics of the gut community posthibernation were more similar to those during torpor and interbout arousal than to those during summer. However, higher abundances of the genera Bacteroides and Akkermansia occurred during posthibernation than during interbout arousal and torpor. Collectively, our results clearly demonstrate that seasonal changes in physiology associated with hibernation and activity affect the gut microbial community in the arctic ground squirrel. Importantly, similarities between the gut microbiota of arctic ground squirrels and thirteen-lined ground squirrels suggest the potential for a core microbiota during hibernation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178600 | PMC |
http://dx.doi.org/10.1128/AEM.01537-14 | DOI Listing |
Int J Mol Sci
November 2024
Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China.
Hibernating mammals experience severe hemodynamic changes over the torpor-arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2025
School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
Cyclic hibernation bouts in Daurian ground squirrels (Spermophilus dauricus) lead to repeated suppression and recovery of mitochondrial respiratory function across multiple organs, potentially impacting reactive oxygen species (ROS) dynamics. The Harderian gland (HG) plays an important role in endocrine regulation through porphyrin secretion. However, the influence of hibernation on oxidative pressure and associated antioxidant pathways in the HG remains inadequately understood.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
J Comp Physiol B
December 2024
Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, Anchorage, USA.
Energy conservation associated with hibernation is maximized at the intersection of low body temperature (T), long torpor bouts, and few interbout arousals. In the arctic ground squirrel (Urocitellus parryii), energy conservation during hibernation is best achieved at ambient temperatures (T) around 0 °C; however, they spend the majority of hibernation at considerably lower T. Because arctic ground squirrels switch to mixed fuel metabolism, including protein catabolism, at extreme low T of hibernation, we sought to investigate how microbial urea-nitrogen recycling is used under different thermal conditions.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
November 2024
Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China; Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, Shaanxi, China. Electronic address:
Muscle and bone are cooperatively preserved in Daurian ground squirrels (Spermophilus dauricus) during hibernation. As such, we hypothesized that IGF-1 and myostatin may contribute to musculoskeletal maintenance during this period. Thus, we systematically assessed changes in the protein expression levels of IGF-1 and myostatin, as well as their corresponding downstream targets, in the vastus medialis (VM) muscle and femur in Daurian ground squirrels during different stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!