A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-range magnetic order in the 5d(2) double perovskite Ba2CaOsO6: comparison with spin-disordered Ba2YReO6. | LitMetric

Long-range magnetic order in the 5d(2) double perovskite Ba2CaOsO6: comparison with spin-disordered Ba2YReO6.

J Phys Condens Matter

Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada. Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON L8S 4M1, Canada.

Published: July 2014

The B-site ordered double perovskite Ba2CaOsO6 was studied by dc magnetic susceptibility, powder neutron diffraction and muon spin relaxation methods. The lattice parameter is a = 8.3619(6) Å at 280 K and cubic symmetry [Formula: see text] is retained to 3.5 K with a = 8.3462(7) Å. Curie-Weiss susceptibility behaviour is observed for T > 100 K and the derived constants are C = 0.3361(3) emu K mol(-1) and ΘCW = -156.2(3) K, in excellent agreement with literature values. This Curie constant is much smaller than the spin-only value of 1.00 emu K mol(-1) for a 5d(2) Os(6+) configuration, indicating a major influence of spin-orbit coupling. Previous studies had detected both susceptibility and heat capacity anomalies near 50 K but no definitive conclusion was drawn concerning the nature of the ground state. While no ordered Os moment could be detected by powder neutron diffraction, muon spin relaxation (µSR) data show clear long-lived oscillations indicative of a continuous transition to long-range magnetic order below TC = 50 K. An estimate of the ordered moment on Os(6+) is ∼ 0.2 μB, based upon a comparison with µSR data for Ba2YRuO6 with a known ordered moment of 2.2 μB. These results are compared with those for isostructural Ba2YReO6 which contains Re(5+), also 5d(2), and has a nearly identical unit cell constant, a = 8.36278(2) Å-a structural doppelgänger. In contrast, Ba2YReO6 shows ΘCW = - 616 K, and a complex spin-disordered and, ultimately, spin-frozen ground state below 50 K, indicating a much higher level of geometric frustration than in Ba2CaOsO6. The results on these 5d(2) systems are compared to recent theory, which predicts a variety of ferromagnetic and antiferromagnetic ground states. In the case of Ba2CaOsO6, our data indicate that a complex four-sublattice magnetic structure is likely. This is in contrast to the spin-disordered ground state in Ba2YReO6, despite a lack of evidence for structural disorder, for which theory currently provides no clear explanation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/26/30/306003DOI Listing

Publication Analysis

Top Keywords

ground state
12
ordered moment
12
long-range magnetic
8
magnetic order
8
double perovskite
8
perovskite ba2caoso6
8
powder neutron
8
neutron diffraction
8
diffraction muon
8
muon spin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!