In order to discover and develop novel signaling inhibitors from plants, a screening system was established targeting the two-component system of Cryptococcus neoformans by using the wild type and a calcineurin mutant of C. neoformans, based on the counter-regulatory action of high-osmolarity glycerol (Hog1) mitogen-activated protein kinase and the calcineurin pathways in C. neoformans. Among 10,000 plant extracts, that from Harrisonia abyssinica Oliv. exhibited the most potent inhibitory activity against C. neoformans var. grubii H99 with fludioxonil. Bioassay-guided fractionation was used to isolate two bioactive compounds from H. abyssinica, and these compounds were identified as chebulagic acid and chebulanin using spectroscopic methods. These compounds specifically inhibited the calcineurin pathway in C. neoformans. Moreover, they exhibited potent antifungal activities against various human pathogenic fungi with minimum inhibitory concentrations ranging from 0.25 to over 64 µg/ml.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.1405.05030DOI Listing

Publication Analysis

Top Keywords

calcineurin pathway
8
chebulagic acid
8
acid chebulanin
8
harrisonia abyssinica
8
abyssinica oliv
8
exhibited potent
8
neoformans
5
inhibition calcineurin
4
pathway tannins
4
tannins chebulagic
4

Similar Publications

The aim of the present study was to explore the role of ovarian cancer G protein-coupled receptor 1 (OGR1) in osteoclast differentiation and activity induced by extracellular acid. The impact of extracellular acidification on osteoclasts was investigated. Briefly, osteoclasts were generated from RAW 264.

View Article and Find Full Text PDF

Transcriptional regulation in the absence of inositol trisphosphate receptor calcium signaling.

Front Cell Dev Biol

December 2024

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States.

The activation of IP receptor (IPR) Ca channels generates agonist-mediated Ca signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IPR isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model.

View Article and Find Full Text PDF

Background: the protein phosphatase 3 catalytic subunit alpha (PPP3CA) gene encodes for the alpha isoform of the calcineurin catalytic subunit, which controls the phosphorylation status of many targets. Currently, 23 pathogenic variants of PPP3CA are known, with clinical manifestations varying by mutation type and domain.

Results: through whole exome sequencing, we found two de novo variants in PPP3CA: a frameshift variant predicted leading to a truncated protein in Pt.

View Article and Find Full Text PDF

Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a genetic arrhythmic syndrome caused by mutations in the calcium (Ca) release channel ryanodine receptor (RyR2) and its accessory proteins. These mutations make the channel leaky, resulting in Ca-dependent arrhythmias. Besides arrhythmias, CPVT hearts typically lack structural cardiac remodeling, a characteristic often observed in other cardiac conditions (heart failure, prediabetes) also marked by RyR2 leak.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!