Antioxidant defence in UV-irradiated tobacco leaves is centred on hydrogen-peroxide neutralization.

Plant Physiol Biochem

Department of Plant Biology, Institute of Biology, University of Pécs, Pécs, Hungary. Electronic address:

Published: September 2014

Greenhouse grown tobacco (Nicotiana tabacum L. cv. Petit Havana) plants were exposed to supplemental UV centred at 318 nm and corresponding to 13.6 kJ m(-2) d(-1) biologically effective UV-B (280-315 nm) radiation. After 6 days this treatment decreased photosynthesis by 30%. Leaves responded by a large increase in UV-absorbing pigment content and antioxidant capacities. UV-stimulated defence against ROS was strongest in chloroplasts, since activities of plastid enzymes FeSOD and APX had larger relative increases than other, non-plastid specific SODs or peroxidases. In addition, non-enzymatic defence against hydroxyl radicals was doubled in UV treated leaves as compared to controls. In UV treated leaves, the extent of activation of ROS neutralizing capacities followed a peroxidases > hydroxyl-radical neutralization > SOD order. These results suggest that highly effective hydrogen peroxide neutralization is the focal point of surviving UV-inducible oxidative stress and argue against a direct signalling role of hydrogen peroxide in maintaining adaptation to UV, at least in laboratory experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2014.06.011DOI Listing

Publication Analysis

Top Keywords

treated leaves
8
hydrogen peroxide
8
antioxidant defence
4
defence uv-irradiated
4
uv-irradiated tobacco
4
leaves
4
tobacco leaves
4
leaves centred
4
centred hydrogen-peroxide
4
hydrogen-peroxide neutralization
4

Similar Publications

T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.

View Article and Find Full Text PDF

Introduction: Knee alignment significantly impacts the outcome of total knee arthroplasty (TKA). Understanding patient perceptions of their knee alignment in relation to objective measurements is essential to ensure optimal surgical outcomes and to meet patients' expectations. This study reports patients' perception of pre- and postoperative knee alignment in relation to radiographic alignment measurements.

View Article and Find Full Text PDF

The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.

View Article and Find Full Text PDF

Dufulin Impacts Plant Defense Against Tomato Yellow Leaf Curl Virus Infecting Tomato.

Viruses

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.

(TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives.

View Article and Find Full Text PDF

Modeling BK Virus Infection in Renal Transplant Recipients.

Viruses

December 2024

Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA.

Kidney transplant recipients require a lifelong protocol of immunosuppressive therapy to prevent graft rejection. However, these same medications leave them susceptible to opportunistic infections. One pathogen of particular concern is human polyomavirus 1, also known as BK virus (BKPyV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!