Modulation of dipalmitoylphosphatidylcholine monolayers by dimethyl sulfoxide.

Langmuir

Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.

Published: July 2014

The action of the penetration-enhancing agent, dimethyl sulfoxide (DMSO), on phospholipid monolayers was investigated at the air-water interface using a combination of experimental techniques and molecular dynamics simulations. Brewster angle microscopy revealed that DPPC monolayers remained laterally homogeneous at subphase concentrations up to a mole fraction of 0.1 DMSO. Neutron reflectometry of the monolayers in combination with isotopic substitution enabled the determination of solvent profiles as a function of distance perpendicular to the interface for the different DMSO subphase concentrations. These experimental results were compared to those obtained from molecular dynamic (MD) simulations of the corresponding monolayer systems. There was excellent agreement found between the MD-derived reflectivity curves and the measured data for all of the H/D contrast variations investigated. The MD provide a detailed description of the distribution of water and DMSO molecules around the phosphatidylcholine headgroup, and how this distribution changes with increasing DMSO concentrations. Significantly, the measurements and simulations that are reported here support the hypothesis that DMSO acts by dehydrating the phosphatidylcholine headgroup, and as such provide the first direct evidence that it does so primarily by displacing water molecules bound to the choline group.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la501275hDOI Listing

Publication Analysis

Top Keywords

dimethyl sulfoxide
8
subphase concentrations
8
phosphatidylcholine headgroup
8
dmso
6
modulation dipalmitoylphosphatidylcholine
4
monolayers
4
dipalmitoylphosphatidylcholine monolayers
4
monolayers dimethyl
4
sulfoxide action
4
action penetration-enhancing
4

Similar Publications

In recent years, liquid-solid triboelectric nanogenerators (L-S TENGs) have been rapidly developed in the field of liquid energy harvesting and self-powered sensing. This is due to a number of advantages inherent in the technology, including the low cost of fabricated materials, structural diversity, high charge-energy conversion efficiency, environmental friendliness, and a wide range of applications. As liquid phase dielectric materials typically used in L-S TENG, a variety of organic and inorganic single-phase liquids, including distilled water, acidic solutions, sodium chloride solutions, acetone, dimethyl sulfoxide, and acetonitrile, as well as paraffinic oils, have been used in experiments.

View Article and Find Full Text PDF

[Efficient synthesis of polydatin by a two-enzyme coupled with one-pot method].

Sheng Wu Gong Cheng Xue Bao

January 2025

School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, China.

Traditional Chinese medicine of has been utilized in China for thousands of years. Its primary active compound, polydatin, exhibits a variety of pharmacological effects including the regulation of glucose and lipid metabolism, suppression of cough and asthma, as well as antibacterial and anti-inflammatory properties. However, conventional methods for polydatin production are inadequate to satisfy the market demand.

View Article and Find Full Text PDF

Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat Accelerates Wound Healing in a Mouse Hind limb Lymphedema Model.

Adv Wound Care (New Rochelle)

January 2025

Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

Drugs regulating hypoxia-inducible factor (HIF)-1α have not been investigated for wound healing in lymphedema. Therefore, we examined the effects of drug modulation of HIF-1α activity for wound healing in our previously developed mouse model of nonirradiated hind limb lymphedema. Mouse hind limb lymphedema models ( = 17) and a sham group ( = 6) were created using 8- to 10-week-old male C57BL/6N mice.

View Article and Find Full Text PDF

Background: Autologous fat grafting (AFG) often needs multiple sessions due to low volume retention. Young adipose tissue demonstrates a more pronounced therapeutic effect; thus, the cryopreservation of adipose tissue of young origin is particularly crucial. This study investigated the protective effect of a new cryopreservation solution combining trehalose, glycerol, and metformin on adipose tissue.

View Article and Find Full Text PDF

A Potent Bis-Heteroleptic Ruthenium(II) Complex-Based Chalcogen Bonding Receptor for Selective Sensing of Phosphates.

Inorg Chem

January 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India.

The incorporation of a selenoimidazolium-based chalcogen bond (ChB) donor into a bis-heteroleptic Ru(II) complex (Ru-Se) has been designed for the first time to explore its anion-sensing properties and understand its selectivity to specific classes of anions. Photophysical studies demonstrate the receptor's selectivity toward phosphates, while H NMR displays its ability to recognize both I and HPO among the different halides and oxoanions through ChB interaction in CHCN and dimethyl sulfoxide- solvents, respectively. Additionally, microscopic studies such as DLS and TEM reveal that the selective turn-on sensing of HPO and HPO compared to I is driven by supramolecular aggregation behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!