Hyperspectral imaging with enhanced darkfield microscopy (HSI-M) possesses unique advantages in its simplicity and non-invasiveness. In consideration of the urgent need for profound knowledge on the behavior and effects of engineered nanoparticles (NPs), here, we determined the capability of HSI-M for examining cellular uptake of different metal-based NPs, including nanosized metals (silver and gold, both citrate stabilized), metal oxides (copper oxide and titanium dioxide), and CdSe/ZnS core/shell quantum dots at subtoxic concentrations. Specifically, we demonstrated that HSI-M can be used to detect and semi-quantify these NPs in the ciliated protozoan Tetrahymena thermophila as a model aquatic organism. Detection and semi-quantification were achieved on the basis of spectral libraries for the NPs suspended in extracellular substances secreted by this single-celled organism, accounting for matrix effects. HSI-M was able to differentiate between NP types, provided that spectral profiles were significantly different from each other. This difference, in turn, depended upon NP type, size, agglomeration status, and position relative to the focal plane. As an exception among the NPs analyzed in this study, titanium dioxide NPs showed spectral similarities compared to cell material of unexposed control cells, leading to false positives. High biological variability resulted in highly variable uptake of NPs in cells of the same sample as well as between different exposures. We therefore encourage the development of techniques able to reduce the currently long analysis times that still hamper the acquisition of statistically strong data sets. Overall, this study demonstrates the potential and challenges of HSI-M in monitoring cellular uptake of synthetic NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es500898j | DOI Listing |
Front Plant Sci
December 2024
College of Agronomy, College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, Shandong, China.
In order to achieve precise discrimination of leaf diseases in the Maize/Soybean intercropping system, i.e. leaf spot disease, rust disease, mixed leaf diseases, this study utilized hyperspectral imaging and deep learning algorithms for the classification of diseased leaves of maize and soybean.
View Article and Find Full Text PDFSci Rep
December 2024
Entomology department, Faculty of Science, Ain Shams University, Cairo, Egypt.
Photosensitizing compounds are eco-friendly promising organic dyes for managing insect pests without facing the risk of resistance. The photodynamic efficacy of four Photosensitizing compounds (rose Bengal, rhodamine B, methylene blue and methyl violet) was monitored against the third larval instar of Spodoptera littoralis (Boisduval), after exposure to sunlight. The LC values of the four compounds; rose Bengal, rhodamine B, methylene blue and methyl violet recorded 0.
View Article and Find Full Text PDFAnn Surg Open
December 2024
From the Department of Visceral, Transplant, Thoracic and Vascular Surgery, Division of Hepatobiliary Surgery and Visceral Transplant Surgery, University Clinic Leipzig, Germany.
Objective: This study explored the novel application of hyperspectral imaging (HSI) for in vivo allograft perfusion assessment during liver transplantation (LT) and its potential value for predicting early allograft dysfunction (EAD), graft, and overall survival (OS).
Background: LT is a well-established therapy for acute and chronic liver diseases, with excellent outcomes. However, a significant proportion of recipients experience EAD, which affects graft and OS.
Food Chem
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China. Electronic address:
Soybeans are used for human consumption or animal feed due to their abundant protein content. In this study, visible-near infrared (VNIR) hyperspectral imaging (HSI) and short-wave infrared HSI combined with three-levels data fusion methods were employed to detect the protein content of soybean seeds, including measurement-level fusion, feature-level fusion, and decision-level fusion. Additionally, three novel decision-level fusion methods were proposed, including binary linear regression, feature-based multiple linear regression (MLR), and model-based MLR.
View Article and Find Full Text PDFPlant Methods
December 2024
Institute of Sugar Beet Research, Göttingen, Niedersachsen, 37079, Germany.
Background: This research proposes an easy to apply quality assurance pipeline for hyperspectral imaging (HSI) systems used for plant phenotyping. Furthermore, a concept for the analysis of quality assured hyperspectral images to investigate plant disease progress is proposed. The quality assurance was applied to a handheld line scanning HSI-system consisting of evaluating spatial and spectral quality parameters as well as the integrated illumination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!