A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Within-otolith variability in chemical fingerprints: implications for sampling designs and possible environmental interpretation. | LitMetric

Within-otolith variability in chemical fingerprints: implications for sampling designs and possible environmental interpretation.

PLoS One

Université de Nice Sophia-Antipolis, Faculté des Sciences, EA 4228 ECOMERS, Nice, France; Laboratory of Conservation and Management of Marine and Coastal Resources, Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento-CoNISMa (Consorzio Nazionale Interuniversitario per le Scienze del Mare), Lecce, Italy.

Published: February 2015

AI Article Synopsis

  • Otolith elemental fingerprinting, analyzed via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), is a method used to study fish dispersal and connectivity by providing a unique chemical signature at a specific life stage.
  • This study examines whether multiple ablations (or samples) from a single otolith can serve as independent data points in research, investigating the spatial variability in otolith chemistry among fish from different sites on the Apulian Adriatic coast.
  • Findings indicate that within-otolith variability is significant and can reveal differences in elemental uptake among individuals, suggesting its potential usefulness as a marker for fish experiencing stress, and highlighting the importance of incorporating

Article Abstract

Largely used as a natural biological tag in studies of dispersal/connectivity of fish, otolith elemental fingerprinting is usually analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). LA-ICP-MS produces an elemental fingerprint at a discrete time-point in the life of a fish and can generate data on within-otolith variability of that fingerprint. The presence of within-otolith variability has been previously acknowledged but not incorporated into experimental designs on the presumed, but untested, grounds of both its negligibility compared to among-otolith variability and of spatial autocorrelation among multiple ablations within an otolith. Here, using a hierarchical sampling design of spatial variation at multiple scales in otolith chemical fingerprints for two Mediterranean coastal fishes, we explore: 1) whether multiple ablations within an otolith can be used as independent replicates for significance tests among otoliths, and 2) the implications of incorporating within-otolith variability when assessing spatial variability in otolith chemistry at a hierarchy of spatial scales (different fish, from different sites, at different locations on the Apulian Adriatic coast). We find that multiple ablations along the same daily rings do not necessarily exhibit spatial dependency within the otolith and can be used to estimate residual variability in a hierarchical sampling design. Inclusion of within-otolith measurements reveals that individuals at the same site can show significant variability in elemental uptake. Within-otolith variability examined across the spatial hierarchy identifies differences between the two fish species investigated, and this finding leads to discussion of the potential for within-otolith variability to be used as a marker for fish exposure to stressful conditions. We also demonstrate that a 'cost'-optimal allocation of sampling effort should typically include some level of within-otolith replication in the experimental design. Our findings provide novel evidence to aid the design of future sampling programs and improve our general understanding of the mechanisms regulating elemental fingerprints.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085012PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101701PLOS

Publication Analysis

Top Keywords

within-otolith variability
24
multiple ablations
12
variability
9
within-otolith
8
chemical fingerprints
8
ablations otolith
8
hierarchical sampling
8
sampling design
8
otolith
6
spatial
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: