In this work, we report on the self-assembly of bimetallic CoFe carbide magnetic nanoparticles (MNPs) stabilized by a mixture of long chain surfactants. A dedicated setup, coupling dip coating and sputtering chamber, enables control of the self-assembly of MNPs from regular stripe to continuous thin films under inert atmosphere. The effects of experimental parameters, MNP concentration, withdrawal speed, amount, and nature of surfactants, as well as the surface state of the substrates are discussed. Magnetic measurements revealed that the assembled particles were not oxidized, confirming the high potentiality of our approach for the controlled deposition of highly sensitive MNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la404044eDOI Listing

Publication Analysis

Top Keywords

dip coating
8
tuning deposition
4
deposition magnetic
4
magnetic metallic
4
metallic nanoparticles
4
nanoparticles periodic
4
periodic pattern
4
pattern thin
4
thin film
4
film entrainment
4

Similar Publications

The effects of filter fabrication approaches on photocatalytic abatement of formaldehyde in an indoor environment using a TiO-based air purifier system.

Environ Res

December 2024

Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea. Electronic address:

Titanium dioxide (TiO) is the most commonly used catalyst for fabricating commercial photocatalytic air purifier (AP) systems. The AP performance can be affected sensitively by the preparation conditions of filters and the physicochemical properties (e.g.

View Article and Find Full Text PDF

Analytical thin layer chromatography (TLC) is a simple yet powerful chromatographic technique that is widely used for the qualitative characterization of complex mixtures such as plant extracts. For their qualitative and visual characterisation, a large number of more or less specific colour reactions are at hand and numerous reference substances are available as well. However, the identification of extract components by colour and the comparison of retention times is not straightforward.

View Article and Find Full Text PDF

Polyurethane sponge is frequently selected as a substrate material for constructing flexible compressible sensors due to its excellent resilience and compressibility. However, being highly hydrophilic and flammable, it not only narrows the range of use of the sensor but also poses a great potential threat to human safety. In this paper, a conductive flexible piezoresistive sensor (CHAP-PU) with superhydrophobicity and high flame retardancy was prepared by a simple dip-coating method using A-CNTs/HGM/ADP coatings deposited on the surface of a sponge skeleton and modified with polydimethylsiloxane.

View Article and Find Full Text PDF

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

Lignin and copper nanocomposite coating for antibacterial mask.

Int J Biol Macromol

December 2024

Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA)State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China. Electronic address:

Lignin is a natural phenolic polymer characterized with renewable, sustainable and biocompatible, but yet remain underutilized. In the post-pandemic era, people are conventionally reusing mask but without any disinfections to prevent infection of virus in public places, which could lead to accumulation of bacteria and secondary infections. The development of antibacterial mask from lignin would simultaneously address the hygiene issues of used mask due to microbe accumulation and provide novel approach for lignin valorization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!