Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thioredoxin reductases, important biological redox mediators for two-electron transfers, contain either 2 cysteines or a cysteine (Cys) and a selenocysteine (Sec) at the active site. The incorporation of Sec is metabolically costly, and therefore surprising. We provide here a rationale: in the case of an accidental one-electron transfer to a S-S or a S-Se bond during catalysis, a thiyl or a selanyl radical, respectively would be formed. The thiyl radical can abstract a hydrogen from the protein backbone, which subsequently leads to the inactivation of the protein. In contrast, a selanyl radical will not abstract a hydrogen. Therefore, formation of Sec radicals in a GlyCysSecGly active site will less likely result in the destruction of a protein compared to a GlyCysCysGly active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi5003376 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!