Development of a preclinical model of donation after circulatory determination of death for translational application.

Transplant Res

INSERM U1082, CHU de Poitiers, rue de la Milétrie, B.P. 577, F-86021 Cedex Poitiers, France ; GH Pitié-Salpêtrière, AP-HP, Service d'Urologie et de transplantation rénale, Paris F-75013, France ; UPMC Université Paris VI, Paris F-75013, France.

Published: July 2014

Background: Extracorporeal membranous oxygenation is proposed for abdominal organ procurement from donation after circulatory determination of death (DCD). In France, the national Agency of Biomedicine supervises the procurement of kidneys from DCD, specifying the durations of tolerated warm and cold ischemia. However, no study has determined the optimal conditions of this technique. The aim of this work was to develop a preclinical model of DCD using abdominal normothermic oxygenated recirculation (ANOR). In short, our objectives are to characterize the mechanisms involved during ANOR and its impact on abdominal organs.

Methods: We used Large White pigs weighing between 45 and 55 kg. After 30 minutes of potassium-induced cardiac arrest, the descending thoracic aorta was clamped and ANOR set up between the inferior vena cava and the abdominal aorta for 4 hours. Hemodynamic, respiratory and biochemical parameters were collected. Blood gasometry and biochemistry analysis were performed during the ANOR procedure.

Results: Six ANOR procedures were performed. The surgical procedure is described and intraoperative parameters and biological data are presented. Pump flow rates were between 2.5 and 3 l/min. Hemodynamic, respiratory, and biochemical objectives were achieved under reproducible conditions. Interestingly, animals remained hemodynamically stable following the targeted protocol. Arterial pH was controlled, and natremia and renal function remained stable 4 hours after the procedure was started. Decreased hemoglobin and serum proteins levels, concomitant with increased lactate dehydrogenase activity, were observed as a consequence of the surgery. The serum potassium level was increased, owing to the extracorporeal circulation circuit.

Conclusions: Our ANOR model is the closest to clinical conditions reported in the literature and will allow the study of the systemic and abdominal organ impact of this technique. The translational relevance of the pig will permit the determination of new biomarkers and protocols to improve DCD donor management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082279PMC
http://dx.doi.org/10.1186/2047-1440-3-13DOI Listing

Publication Analysis

Top Keywords

preclinical model
8
donation circulatory
8
circulatory determination
8
determination death
8
abdominal organ
8
hemodynamic respiratory
8
respiratory biochemical
8
anor
6
abdominal
5
development preclinical
4

Similar Publications

The molar dose of FAPI administered impacts on the FAP-targeted PET imaging and therapy in mouse syngeneic tumor models.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.

Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.

View Article and Find Full Text PDF

Ferroptosis: A Targetable Vulnerability for Melanoma Treatment.

J Invest Dermatol

January 2025

Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. Electronic address:

Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models.

View Article and Find Full Text PDF

COX-2 Inhibitor Prediction With KNIME: A Codeless Automated Machine Learning-Based Virtual Screening Workflow.

J Comput Chem

January 2025

Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.

Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure.

View Article and Find Full Text PDF

Dasatinib and Quercetin Limit Gingival Senescence, Inflammation, and Bone Loss.

J Dent Res

January 2025

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Cellular senescence has emerged as one of the central hallmarks of aging and drivers of chronic comorbidities, including periodontal diseases. Senescence can also occur in younger tissues and instigate metabolic alterations and dysfunction, culminating in accelerated aging and pathological consequences. Senotherapeutics, such as the combination of dasatinib and quercetin (DQ), are being increasingly used to improve the clinical outcomes of chronic disorders and promote a healthy life span through the reduction of senescent cell burden and senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

The technical development of implant-supported fixed dental prostheses (iFDP) initially concentrated on the computer-aided manufacturing of prosthetic restorations (CAM). Advances in information technologies have shifted the focus for optimizing digital workflows to AI-based processes for design (CAD). This pre-clinical pilot trial investigated the feasibility of the automatic design of three-unit iFDPs using CAD software (Dental Manger 2021, 3Shape; DentalCAD 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!