Umbilical cord blood mesenchymal stem cells co-modified by TERT and BDNF: a novel neuroprotective therapy for neonatal hypoxic-ischemic brain damage.

Int J Dev Neurosci

Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China; Department of Pediatrics and Neurology, University of California, San Francisco, CA 94143, USA. Electronic address:

Published: November 2014

Hypoxic-ischemic brain damage (HIBD), a leading cause of perinatal disability and death, has limited therapeutic options. Stem cell therapy has been demonstrated as a potential novel therapy for neurological disorders. Compared with other types of stem cells, umbilical cord blood mesenchymal stem cells (UCB-MSCs) have several unique characteristics, such as a higher rate of cell proliferation and clonality. However, the limited life span of UCB-MSCs hinders their clinical application. Therefore, efforts are urgently needed to circumvent this disadvantage. Telomerase reverse transcriptase (TERT), which promotes cell proliferation and survival, plays a protective role in hypoxic-ischemic (HI) brain injury. Thus, it is reasonable to propose that UCB-MSCs modified by exogenous TERT expression might have a longer lifespan and increased viability. Moreover, brain-derived neurotrophic factor (BDNF), a neurotrophin that regulates development, regeneration, survival and maintenance of neurons, facilitates post-injury recovery when administered by infusion or virus-mediated delivery. Therefore, TERT- and BDNF-modified UCB-MSCs may have a longer lifespan and also maintain neural differentiation, thus promoting the recovery of neurological function following hypoxic-ischemic brain damage (HIBD) and thereby representing a new effective strategy for HIBD in neonates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2014.06.014DOI Listing

Publication Analysis

Top Keywords

hypoxic-ischemic brain
16
stem cells
12
brain damage
12
umbilical cord
8
cord blood
8
blood mesenchymal
8
mesenchymal stem
8
damage hibd
8
cell proliferation
8
longer lifespan
8

Similar Publications

The impact of clinical seizures and adverse brain MRI patterns in neonates with hypoxic-ischemic encephalopathy and abnormal neurodevelopment.

Clinics (Sao Paulo)

January 2025

Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Electronic address:

Introduction: This study aimed to investigate the associations among seizures, clinical characteristics, and brain injury on Magnetic Resonance Imaging (MRI) in infants with Hypoxic Ischemic Encephalopathy (HIE), and to determine whether these findings can predict unfavorable neurodevelopmental outcomes.

Method: Clinical and electrographic seizures were assessed by amplitude-integrated electroencephalogram, and the extent of brain injury was evaluated by using MRI. At 12‒24 months of age, developmental impairment or death was assessed.

View Article and Find Full Text PDF

Therapeutic hypothermia in preterm infants under 36 weeks: Case series on outcomes and brain MRI findings.

Eur J Pediatr

January 2025

Neonatology Department. Hospital Sant Joan de Déu, Center for Maternal Fetal and Neonatal Medicine. Neonatal Brain Group, Universitat de Barcelona. Hospital Clínic, Universitat de Barcelona. BCNatal - Barcelona, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.

Purpose: Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of neonatal brain injury. Therapeutic hypothermia (TH) is the standard treatment for term neonates, but its safety and efficacy in neonates < 36 weeks gestational age (GA) remains unclear. This case series aimed to evaluate the outcomes of preterm infants with HIE treated with TH.

View Article and Find Full Text PDF
Article Synopsis
  • Neonatal hypoxic-ischemic encephalopathy (HIE) is a leading cause of death and disability in newborns, and caffeine has shown promise in mitigating its effects.
  • In a neonatal rat model, caffeine administration post-injury reduced brain damage and inflammation compared to controls, highlighting its potential benefits.
  • The study found that caffeine influences the AMPK/mTOR pathway, suggesting that targeting this pathway could enhance neuroprotection and improve outcomes for HIE, especially in regions lacking sufficient resources for treatment.
View Article and Find Full Text PDF

Hypoxic-ischemic brain injury (HIBD) is a major cause of neonatal mortality and long-term neurological deficits, with limited treatment options. Extracellular vesicles (EVs) from human umbilical cord mesenchymal stem cells (hUC-MSC-EVs) have shown promise in neuroprotection, but the mechanisms remain unclear. This study explores how hUC-MSC-EVs protect neonatal rats from HIBD.

View Article and Find Full Text PDF

Pediatric Neurosonography: Comprehensive Review and Systematic Approach.

Can Assoc Radiol J

December 2024

Department of Diagnostic and Intervention Radiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.

Neurosonography (NSG) is pivotal for rapid, point-of-care neonatal brain assessment. This review elucidates the comprehensive applications of NSG in pediatric care, emphasizing its role in early diagnosis and management of pathologies affecting the pediatric head-such as scalp lesions, misshapen calvarium, ventricular distortions, and cerebrovascular abnormalities, and its specific role in conditions like hypoxic-ischaemic encephalopathy (HIE) across different neonatal gestational ages. We explore its diagnostic advantage in critical care settings, particularly for infants with stroke risk in sickle cell disease, ECMO-related complications, screening for therapeutic hypothermia, and routine neonatal intensive care unit monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!