hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia.

Eur J Pharmacol

Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan.

Published: October 2014

Acquired long QT syndrome induced by non-cardiovascular drugs can cause lethal cardiac arrhythmia called torsades de points and is a significant problem in drug development. The prolongation of QT interval and cardiac action potential duration are mainly due to reduced physiological function of the rapidly activating voltage-dependent potassium channels encoded by human ether-a-go-go-related gene (hERG). Structurally diverse groups of drugs are known to directly inhibit hERG channel conductance. Therefore, the ability of acute hERG inhibition is routinely assessed at the preclinical stages in pharmaceutical testing. Recent findings indicated that chronic treatment with various drugs not only inhibits hERG channels but also decreases hERG channel expression in the plasma membrane of cardiomyocytes, which has become another concern in safety pharmacology. The mechanisms involve the disruption of hERG trafficking to the surface membrane or the acceleration of hERG protein degradation. From this perspective, we present a brief overview of mechanisms of drug-induced trafficking inhibition and pathological regulation. Understanding of drug-induced hERG trafficking inhibition may provide new strategies for predicting drug-induced QT prolongation and lethal cardiac arrhythmia in pharmaceutical drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2014.06.044DOI Listing

Publication Analysis

Top Keywords

herg trafficking
12
trafficking inhibition
12
lethal cardiac
12
cardiac arrhythmia
12
herg
9
drug development
8
herg channel
8
inhibition
4
drug-induced
4
inhibition drug-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!