AI Article Synopsis

  • The Army requires a portable, non-steam sterilizer for various medical units to efficiently sterilize surgical instruments and specimens in challenging environments.
  • The Portable Chemical Sterilizer (PCS) is designed for battlefield needs, providing lightweight, energy-independent, and durable sterilization technology that outperforms traditional steam autoclaves.
  • The PCS significantly reduces electricity and water use while minimizing weight and size, making it easier to transport and operate in forward deployments.

Article Abstract

There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, 'clean and green' chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination(6,15). Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments(3). As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed "Bertha" in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft(3)), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208883PMC
http://dx.doi.org/10.3791/4354DOI Listing

Publication Analysis

Top Keywords

chlorine dioxide
12
portable chemical
8
chemical sterilizer
8
sterilizer pcs
8
sterilize surgical
8
pcs
5
pcs d-fens
4
d-fens d-fend
4
d-fend novel
4
novel chlorine
4

Similar Publications

Differentiating reactive chlorine species for micropollutant abatement in chloride containing water by electrochemical oxidation process.

Water Res

December 2024

Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China; Institute of Sun Yat-Sen University in Shenzhen, PR China. Electronic address:

Electrochemical oxidation process (EOP) is promising for micropollutant degradation in water treatment, where chloride ions (Cl) are inevitable in aqueous systems, leading to the EOP/Cl system. The oxidation of Cl at anodes generates reactive chlorine species (RCS), including heterogeneous chlorine species (Cl), homogeneous free available chlorine (FAC), chlorine dioxide (ClO), and chlorine radicals (CRs). This study developed a method to differentiate various RCS responsible for the removal of carbamazepine in EOP/Cl using the RuO/IrO-Ti anode.

View Article and Find Full Text PDF

Preparation of bioactive film for regulating chlorine dioxide release based on the hygroscopic properties of chitosan and its application in broccoli preservation.

Int J Biol Macromol

December 2024

Department of Packaging Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China.

An active packaging film was developed by integrating sodium chlorite (SC) and citric acid (CA) into a Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) (PLA/PBAT) matrix, enabling the controlled release of chlorine dioxide (ClO) gas. The release of ClO was further regulated by introducing chitosan (CS) into the film, leveraging its hygroscopic properties. The results showed that when the addition amount of CS was 4 wt%, the water vapor transmission rate increased by 41.

View Article and Find Full Text PDF

Modeling ClO-NOM Reactions for Predicting Byproduct Formation and Micropollutant Degradation in Surface Water.

Environ Sci Technol

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.

Chlorine dioxide (ClO) is a promising alternative disinfectant/oxidant to free chlorine in drinking water treatment, while it reacts with natural organic matter (NOM) to form free chlorine, chlorite ions (ClO), and chlorate ions (ClO) as byproducts. Predicting the ClO consumption and the formation of these byproducts using a kinetic model helps to balance the trade-off between disinfection/oxidation efficiency and byproduct formation. This study establishes a summative equation to describe the reaction between ClO and ClO-reactive moieties in the NOM (CRNOM).

View Article and Find Full Text PDF

The first-coordination sphere of catalysts is known to play a crucial role in reaction mechanisms, but details of how equatorial ligands influence the reactivity remain unknown. Heteroatom ligated to the equatorial position of iron centers in nonheme iron metalloenzymes modulates structure and reactivity. To investigate the impact of equatorial heteroatom substitution on chlorite oxidation, we synthesized and characterized three novel mononuclear nonheme iron(II) complexes with a pentadentate bispidine scaffold.

View Article and Find Full Text PDF

Molecular composition difference of electron donating moieties between natural organic matter and effluent organic matter probed by chlorine dioxide.

Water Res

December 2024

School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China. Electronic address:

Lignin- and tannin-like phenolic compounds are shown to be the major compositions of electron donating moieties (EDM) of aquatic natural organic matter (NOM). However, little is known about the compositions of EDMs within effluent organic matter (EfOM). In the present study, chlorine dioxide (ClO) was used as a selectively oxidative probe to investigate the difference in the molecular composition of EDM between NOM and EfOM due to its high selectivity towards electron-rich compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!