Mammalian embryonic stem cells (ESCs) and sperm exhibit unusual chromatin packaging that plays important roles in cellular function. Here, we extend a recently developed technique, based on deep paired-end sequencing of lightly digested chromatin, to assess footprints of nucleosomes and other DNA-binding proteins genome-wide in murine ESCs and sperm. In ESCs, we recover well-characterized features of chromatin such as promoter nucleosome depletion and further identify widespread footprints of sequence-specific DNA-binding proteins such as CTCF, which we validate in knockdown studies. We document global differences in nuclease accessibility between ESCs and sperm, finding that the majority of histone retention in sperm preferentially occurs in large gene-poor genomic regions, with only a small subset of nucleosomes being retained over promoters of developmental regulators. Finally, we describe evidence that CTCF remains associated with the genome in mature sperm, where it could play a role in organizing the sperm genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184102PMC
http://dx.doi.org/10.1016/j.devcel.2014.05.024DOI Listing

Publication Analysis

Top Keywords

escs sperm
12
chromatin packaging
8
embryonic stem
8
stem cells
8
dna-binding proteins
8
sperm
7
high-resolution mapping
4
chromatin
4
mapping chromatin
4
packaging mouse
4

Similar Publications

Integrating Microarray Data and Single-Cell RNA-Seq Reveals Key Gene Involved in Spermatogonia Stem Cell Aging.

Int J Mol Sci

October 2024

Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.

The in vitro generation of spermatogonial stem cells (SSCs) from embryonic stem cells (ESCs) offers a viable approach for addressing male infertility. A multitude of molecules participate in this intricate process, which requires additional elucidation. Despite the decline in SSCs in aged testes, SSCs are deemed immortal since they can multiply for three years with repeated transplantation.

View Article and Find Full Text PDF

Mimicking the microenvironment of seminiferous tubules plays an indispensable role in directing differentiation of stem cells toward germ cells in vitro. In this work, we fabricated electrospun gelatin (EG) mats (i.e.

View Article and Find Full Text PDF

Certain environmental factors can impact fertility and reproductive parameters such as the number and quality of sperm and eggs. One possible mechanism is the perturbation of epigenetic landscapes in the germline. To explore this possibility, we conducted a CRISPRi screen of epigenetic-related genes to identify those that specifically perturb the differentiation of embryonic stem cells (ESCs) into primordial germ cell-like cells (PGCLCs), exploiting a highly scalable cytokine-free platform.

View Article and Find Full Text PDF

Cannabis, the most consumed illicit psychoactive drug in the world, is increasingly used by pregnant women. However, while cannabinoid receptors are expressed in the early embryo, the impact of phytocannabinoids exposure on early embryonic processes is lacking. Here, we leverage a stepwise in vitro differentiation system that captures the early embryonic developmental cascade to investigate the impact of exposure to the most abundant phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC).

View Article and Find Full Text PDF

In the last two decades, considerable progress has been made in the derivation of mammalian germ cells from pluripotent stem cells such as Embryonic Stem Cells (ESCs) and induced Pluripotent Stem Cells (iPSCs). The pluripotent stem cells are generally first induced into pre-gastrulating endoderm/mesoderm-like status and then specified into putative primordial germ cells (PGCs) termed PGC-like cells (PGCLCs) which possess the potential to generate oocytes and sperms. Adipose-derived mesenchymal stromal cells (ASCs) are multipotent cells, having the capacity to differentiate into cell types such as adipocytes, osteocytes and chondrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!