Non-specific SIRT inhibition as a mechanism for the cytotoxicity of ginkgolic acids and urushiols.

Toxicol Lett

School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland. Electronic address:

Published: September 2014

Ginkgolic acids and urushiols are natural alkylphenols known for their mutagenic, carcinogenic and genotoxic potential. However, the mechanism of toxicity of these compounds has not been thoroughly elucidated so far. Considering that the SIRT inhibitory potential of anacardic acids has been hypothesized by in silico techniques, we herein demonstrated through both in vitro and computational methods that structurally related compounds such as ginkgolic acids and urushiols are able to modulate SIRT activity. Moreover, their SIRT inhibitory profile and cytotoxicity were comparable to sirtinol, a non-specific SIRT inhibitor (SIRT1 and SIRT2), and different from EX-527, a SIRT1 specific inhibitor. This is the first report on the SIRT inhibition of ginkgolic acids and urushiols. The results reported here are in line with previously observed effects on the induction of apoptosis by this class of compounds, and the non-specific SIRT inhibition is suggested as a new mechanism for their in vitro cytotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2014.07.002DOI Listing

Publication Analysis

Top Keywords

ginkgolic acids
16
acids urushiols
16
non-specific sirt
12
sirt inhibition
12
sirt inhibitory
8
sirt
6
acids
5
inhibition mechanism
4
mechanism cytotoxicity
4
ginkgolic
4

Similar Publications

This study aims to address the challenge of detoxifying ginkgolic acid and transform it from waste into a valuable resource. By using pseudo-template molecular imprinting technology to chemically modify polysaccharide materials, we developed a polysaccharide-based molecular imprinted material (MMCC-CD/CS-MIP) for the targeted separation and controlled release of ginkgolic acid. Under optimal conditions, MMCC-CD/CS-MIP demonstrated excellent adsorption performance (Q = 47.

View Article and Find Full Text PDF

Ginkgolic acid inhibits Ebola virus transcription and replication by disrupting the interaction between nucleoprotein and VP30 protein.

Antiviral Res

December 2024

Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:

The Ebola virus, a filovirus, has been responsible for significant human fatalities since its discovery. Despite extensive research, effective small-molecule drugs remain elusive due to its complex pathogenesis. Inhibition of RNA synthesis is a promising therapeutic target, and the VP30 protein plays a critical role in this process.

View Article and Find Full Text PDF

Background: A prebiotic is defined as an indigestible feed substance that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the large intestine, thereby improving host health and products.

Objectives: This study was conducted to determine the effects of supplementing prebiotic fructooligosaccharide (FOS) to the diets of Hy-Line W-36 laying hens.

Methods: A total of 168 Hy-Line W-36 laying hens were allocated to four dietary levels of FOS (0, 1.

View Article and Find Full Text PDF

Pulsed light (PL) is a prospective non-thermal technology that can improve the degradation of ginkgolic acid (GA) and retain the main bioactive compounds in Ginkgo biloba leaves (GBL). However, only using PL hasn't yet achieved the ideal effect of reducing GA. Fermentation of GBL to make ginkgo dark tea (GDT) could decrease GA.

View Article and Find Full Text PDF

Ginkgo biloba L. is a valuable plant, which can be used for medicine, food and ornamental purposes. Despite the above benefits, the components of ginkgolic acids (GA) in ginkgo are considered to cause allergies, embryotoxicity, liver damage and some other adverse reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!