Photochemical generation of photoactive compounds with fulvic-like and humic-like fluorescence in aqueous solution.

Chemosphere

Università di Torino, Dipartimento di Chimica, Via Pietro Giuria 5, 10125 Torino, Italy(1); Università di Torino, Centro Interdipartimentale NatRisk, Via L. Da Vinci 44, 10095 Grugliasco (TO), Italy(2). Electronic address:

Published: September 2014

AI Article Synopsis

Article Abstract

The irradiation of L-tryptophan, L-tyrosine and 4-phenoxyphenol in aqueous solution produced compounds with similar fluorescence properties as humic substances, and with absorption spectra that were significantly extended into the UVA and visible regions compared to the starting compounds. The irradiated systems had photosensitizing properties, as proven by the photodegradation of 2,4,6-trimethylphenol and furfuryl alcohol (probes of excited triplet states and (1)O2, respectively). The described photochemical processes could constitute an additional pathway for the formation of humic substances in clear and shallow water bodies, which would be added to the complex network of reactions involving dissolved organic matter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2014.04.035DOI Listing

Publication Analysis

Top Keywords

aqueous solution
8
humic substances
8
photochemical generation
4
generation photoactive
4
photoactive compounds
4
compounds fulvic-like
4
fulvic-like humic-like
4
humic-like fluorescence
4
fluorescence aqueous
4
solution irradiation
4

Similar Publications

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Two-in-one strategy to enhance the stability of TiCT in transition metal ion solutions.

J Colloid Interface Sci

January 2025

College of Materials Science and Engineering, Hunan University, Changsha 410082 PR China. Electronic address:

Although MXenes have attracted significant attention across diverse fields, they exhibit a pronounced susceptibility to oxidation in aqueous environments, with oxidation significantly accelerated in the presence of transition metal ions (TMI) such as Fe and Cu. This limitation impedes the synthesis of transition metal compounds/MXene-based composites and their potential for functional applications. In this study, we elucidate the mechanism of accelerated oxidation of TiCT is that Fe promotes the electron loss in TiCT, thus leading to an increased production of hydroxyl radicals (OH) to oxidize TiCT.

View Article and Find Full Text PDF

We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).

View Article and Find Full Text PDF

From solubility to efficiency: Per- and polyfluoroalkyl substances (PFAS) regeneration from anion exchange resins.

Sci Total Environ

January 2025

Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:

This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!